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Introduction

Turbulence is omnipresent. It’s in our blood, in our respiratory system, in our
tea and coffee, in the hot air that rises above us, in the wake behind us when
we walk, in the air in a room, around our cars and planes, in the wind above
our farmlands, in the water of all the seas and oceans, in our sun, and in all
the other stars.

For macroscopic flows of water and air the Reynolds number, the ratio of
inertial to viscous forces and describing the amount of turbulence, is generally
much larger than unity. This means practically that all the common flows
around us are turbulent. The difficulty in describing turbulence resides in the
fact that turbulent flows are generally irregular, chaotic, and therefore very
hard to predict. Think of the weather; we can only predict a few days ahead—
at best. In addition, turbulent flows have characteristics across many length-
and time scales, so describing them is non-trivial. Although the equations
describing them are well known, it has puzzled scientists for centuries and we
have not yet ‘solved’ turbulence.

In order to accurately extrapolate laboratory results to higher Reynolds num-
bers we need to know the characteristics of the turbulence we are dealing with.
This means knowing how the flow behaves fundamentally; which transitions
the flows undergo, what the statistical properties of the flows are, the patterns
that are formed inside the flows, as well as knowing the energy and momentum
transport in the flows.

Taylor Couette

The Taylor-Couette apparatus is one of the fundamental configurations to test
theories in fluid dynamics. Fluid is confined between two independently rotat-
ing concentric cylinders. This simple closed geometry has many symmetries,



2 INTRODUCTION

can be constructed relatively easily, and allows for a well-controlled environ-
ment to perform shear experiments. In addition, this geometry allows the
derivation of global balances easily. The apparatus has been used to measure
the viscosity of a fluid, to study hydrodynamic instabilities, pattern forma-
tion, and turbulence. The geometry of the device can be described by the
outer-radius of the inner cylinder r;, the inner-radius of the outer cylinder r,,
and the height of the cylinders L. This gives rise to two geometrical ratios:
the radius ratio n = r;/r, and the aspect ratio I' = L/(r, — r;). The driving
is characterised by two Reynolds numbers: Re;, = wj o7i0(10 — ri)/v, where
v is the kinematic viscosity, and w the angular velocity of the cylinder, and 4
and o subscripts denote quantities pertaining to the inner and outer cylinder,
respectively.

The response of the system after setting the control parameters 7, I', Re;, and
Re,, is a torque 7 (G in nondimensionalised form) in order to maintain the
cylinders at constant speed, and a ‘wind’ velocity inside the flow. This is a
typical flow velocity that is in the direction of the transport, in this case this
is radially; the angular velocity (torque, momentum) is transported from one
cylinder to the other. Given the closed nature of the apparatus, it is now
straightforward to calculate the (average) energy dissipation rate. The energy
input is given by P = w7 . This energy is transferred though the flow, and is
finally dissipated by viscous dissipation. The average energy dissipation rate
can thus be found by e = P/M where M is the mass of the working fluid.

Analogy with Rayleigh-Bénard

In Rayleigh-Bénard convection heat is transported from a hot bottom plate to
a cool top plate. The driving of the system is given by the Rayleigh number
Ra = BgAL3/(kv), where 3 is the thermal expansion coefficient, g the accel-
eration due to gravity, A the temperature difference between top and bottom,
L the height of the system, k the thermal diffusivity, and v the kinematic vis-
cosity. The response of the system, once setting the geometry of the setup and
the amount of driving (Ra), is a heat-transport and a ‘wind’ velocity inside
the flow. The former is given by a Nusselt number Nu = J/Jeonductive, Wwhere
J is the heat flux from bottom to top, and Jeonductive the heat flux in the case
of pure conduction (no convection).

Both system have in common that some quantity is conserved: heat in the
case of Rayleigh-Bénard, and angular velocity (torque) in the case of Taylor-



Couette. Based on the underlying equations one can derive analogies be-
tween Taylor-Couette (TC) flow and Rayleigh-Bénard (RB) convection. It
is found that the driving in TC is better given by a Taylor number Ta =
%(;“7%)4(7"0 — 7)%(r; + 710)%(wi — wo)?/v? (which in complete analogy with
the Rayleigh number), and that the transport is better given by Nu,. Here
Nu, = Ju/Jw laminar (in complete analogy with the Nusselt number in RB),
where J,, is now the angular velocity flux from one cylinder to the other and
can be directly related to the torque 7, and J, jaminar iS the flux in case of
pure laminar flow. We summarize this analogy in table 1.

Taylor-Couette Rayleigh-Bénard
Driving: ~ Ta= UFomrdllotrlloiwe g, — S0AL7
Conserved:  angular velocity flux heat flux

Jo =1 ((urw)ap —v0(w)ae) T = (us0)as — k() as
Transport5 Nu, = Jw/Jw,laminar Nu = J/Jconductivo
Dissipation: ¢ = (Nu, — 1)Ta/c? ¢ = (Nu — 1)Ra/Pr?

4

¢ ), _ ([ 1+ _
Prandtl’: o= (ﬁ) Pr=1*¢
Scaling: Nu,, o< Ta” Nu o Ra”

Table 1: List of analogous relations between Taylor-Couette flow and Rayleigh-
Bénard convection. Taken from [1].

In addition to the aforementioned analogies for the conserved quantities and
driving parameters, we can also derive that dissipation has an analogous form
for both systems. Furthermore one can derive that the transport should scale
as a function of the driving parameter with a certain exponent -y, for both the
RB and TC flow. The full analogy, with all its details, can be read in Ref. [1].
Details will be explained in the individual chapters where necessary.

Open Questions

o How does the torque (or equivalently, angular velocity transport) scale
with increasing Reynolds (Taylor number) for very high Reynolds num-
bers?

o How is this transport altered when rotation of the outer cylinder is in-
troduced?



o How is this transport affected when the ratio of the cylinder radii is
changed?

e How does the ‘wind’ Reynolds number scale with increasing Reynolds
number (Taylor number)?

e Are there large-scale structures inside the flow, and if so, are multiples
states possible?

e What are the statistical properties of the flow?

e What do the velocity profiles look like, and how do they depend on the
rotation of the outer cylinder?

o What can be said about the boundary layer?

A guide through the thesis

Up to now, for the high Reynolds numbers (> 10%), the focus has been on de-
scribing the global (i.e. torque) flow properties, and mostly for the case where
the outer cylinder is stationary. In this thesis we will focus on local quantities
and their connection to global quantities, not only for the case of pure inner
cylinder rotation, but also for the case where both cylinders are rotating. In
chapter 1 (page 5) the global transport is characterized by finding the scaling
exponent of the transport Nu,, oc Ta”. In chapter 2 (page 15) the focus is on
the local flux J, inside the flow and we will define and measure the ‘wind’
velocity of the flow. Following the analogy described in Ref. [1], the bound-
ary layer properties are measured and compared to RB flow [2], see chapter 3
(page 25). In chapter 4 (page 37) the possibility of multiple flow states, even
for very high Ta (Re), is exemplified by simultaneous global and local measure-
ments. In chapter 5 (page 49) the local flow is analyzed with statistical tools:
probability density functions (PDFs), PDFs of velocity increments, structure
functions, and spectral analysis. In chapter 6 (page 67) we perform velocity
profile measurements, and we will have a look at the bi-modality of the flow.
In chapter 7 (page 109) we will have a look at the 1 dependence of the flow for
the global and local quantities. The experimental values are accompanied by
numerical results by Rodolfo Ostilla Ménico. Chapter 8 (page 147) explains
how laser Doppler anemometry measurements can be performed inside the
Taylor-Couette device, despite its curved outer surface. All the conclusions
can be found on page 161.
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Torque scaling in turbulent Taylor-Couette flow
with co- and counter-rotating cylinders®

We analyze the global transport properties of turbulent Taylor-Couette flow in
the strongly turbulent regime for independently rotating outer and inner cylinder,
reaching Reynolds numbers of the inner and outer cylinder of Re; = 2 - 10° and
Re, = +1.4 - 105, respectively. For all Re;, Re,, the dimensionless torque G
scales as a function of the Taylor number Ta (which is proportional to the square
of the difference between the angular velocities of the inner and outer cylinder)
with a universal effective scaling law G o Ta’®8, corresponding to Nu,, o Ta%3®
for the Nusselt number characterizing the vorticity transport between the inner
and outer cylinder. The transport is most efficient for the counter-rotating case
along the diagonal in phase space with w, ~ —0.4w;.

°Published as: Dennis P.M. van Gils, Sander G. Huisman, Gert-Wim Bruggert, Chao Sun,
and Detlef Lohse, Torque scaling in turbulent Taylor-Couette flow with co- and counter-rotating
cylinders, Phys. Rev. Let. 106, 024502 (2011). This publication was selected as Editors’ Sug-
gestion ¥, selected for a synopsis in Physics “Heat and twist of turbulent flows”, and was covered
by Physics Today [3]. The experiments are performed by Huisman, Sun, and van Gils, analysis
is done by Huisman, Sun, and van Gils, and the manuscript is written by Lohse. Discussion of
the results and proofreading of the manuscript by everyone.




6 CHAPTER 1. TORQUE IN TC

1.1 Introduction

Global transport properties of turbulent flows are of prime importance for
many applications of fluid dynamics, but also for a fundamental understand-
ing, as they reflect the interplay between boundary layer and bulk. The two
canonical systems used to analyze the transport properties in closed turbu-
lent systems are Rayleigh-Bénard (RB) convection and Taylor-Couette (TC)
flow, and they are conceptionally closely related [4, 5, 1]. In RB flow, heat
(in dimensionless form the Nusselt number) is transported from the hot bot-
tom plate to the cold top plate [6, 7], whereas in TC flow angular velocity is
transported from the inner to the outer cylinder (for w; > w,). In analogy
to RB flow, Eckhardt et al. [1] identified, from the underlying Navier-Stokes
equations,

T =1 ((upw) 4 g — v0r (W) 4) (1.1)

as relevant conserved transport quantity, representing the flux of angular ve-
locity from the inner to the outer cylinder. Here u,(uy) is the radial (az-
imuthal) velocity, w = wug/r the angular velocity, and (...),, denotes av-
eraging over time and an area with constant r from the axis. J* is made
dimensionless with its value J = 2vr?rZ(w; — w,)/(r2 — r?) for the laminar

case, giving a “Nusselt number” as dimensionless transport quantity,
Nuy, = J¥ /2, (1.2)

where 7; , and w; , denote the radius and the angular velocity of the inner and
outer cylinder, respectively, v is the kinematic viscosity of the fluid. Nu,, is
closely connected to the torque 7 that is necessary to keep the inner cylinder
rotating at constant angular velocity, or in dimensionless form to

_ T _ Jam _
— W = Nu,, 2= Nu,Glam, (1.3)

where /¢ is the height of the cylinder and pguiq the density of the fluid. Yet
another often used possibility to represent the data is the friction coefficient
¢ = (1 —n)?/m)G/Re? 8.

For RB flow, the scaling properties of the Nusselt number in the fully turbulent
regime (i.e. for very large Rayleigh numbers, say Ra > 101°) have received
tremendous attention in the last decade and various heat flux measurements
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have been performed; again, see the review article [6]. In contrast, TC flow
in the fully turbulent regime got much less attention, with the only exception
being the Texas experiment by Swinney, Lathrop, and coworkers [9, 8, 10, 11].
In that experiment a Reynolds number Re; = 105 of the inner cylinder was
reached (with the outer cylinder at rest) and an effective power law of G < Re]
with v ~ 1.6-1.85 was detected [9, 8] in the turbulent regime, though the
scaling properties are not particularly good and strictly speaking v depends
on Re;, i.e. there is no pure scaling. Indeed, in refs. [12, 13, 1] we have
argued that there should be a smooth transition from v = 3/2 for the small
Reynolds number of a boundary layer dominated flow to v = 2 for the larger
Reynolds number of a flow dominated by the turbulent bulk. Turbulent TC
experiments get even more scarce for TC flow with inner and outer cylinder
rotating independently. We are only aware of the Wendt experiments in the
1930s [14], reaching Re; &~ 10° and Re, ~ £10°, and the recent ones by Ravelet
et al. [15], reaching Re; ~ 5 - 10* and Re, = 2 - 10*. The hitherto explored
phase diagram of TC flow with independently rotating cylinders is shown in fig.
1.1a. An alternative representation of the phase diagram is given by Dubrulle
et al. [16], who introduces a shear Reynolds number and a rotation number
as alternative representation of the phase space, see below.

In the phase diagram fig. 1.1a we have also added the Re;, Re, numbers which
we explored with our newly constructed Twente turbulent TC facility (T3C),
which we have described in great detail in ref. [21]. In short, at this facility the
cylinders are £ = 0.97 m high; the inner cylinder has a radius of r; = 20 cm,
and the outer cylinder of r, = 27.9 cm, and the maximal inner and outer
angular velocity are w;/(27) = 20 Hz and w,/(27) = £10 Hz, respectively,
corresponding to Re; = riw;d/v = 2 - 10° and Re, = rowod/v = +1.4 - 106,
with d = r, — r;. The system is fully temperature controlled through cooling
of the upper and lower plate. The torque is measured at the middle part
of the inner cylinder (similarly as done in [9]) by load cells imbedded inside
the inner cylinder and not by measuring the torque through the sealing. One
of the goals we want to achieve with this new facility is to explore the (Re;,
Re,, n = r;/7,) parameter space, thus entering terra incognita, and measure
the torque (i.e., transport of angular velocity—Nu,, in dimensionless form—
or, again expressed differently, the overall drag) and the internal Reynolds
number of the flow.
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(a) counterrotation Re,=0 corotation
T T T T T T
Rei F oxp. Wendt 1933 % _sim. He et al. 2007 /, e Rei
6 < exp. Taylor 1936 W sim. Pirr6 et al. 2007 8 6
10F O exp.Smithetal 1982 [F W sim. Bilson et al. 2007 a 310
[Jexp. Andereck et al. 1986 @ sim. Dong 2007/2008 a
exp. Tong et al. 1990 % exp. Ravelet et al. 2010 2
exp. Lathrop et al. 1992 A exp. Borrero et al. 2010 7’
= . ana. Esser et al. 1996 O exp. T°C 2010 .
5 N 5
10°F + o+ o+ F+< 3 £ + 410
s +
s Tt + + " + 4 $ +
+ + ,+:$ + +
x 7 + + F 4
ml 1 . {10
® e

Figure 1.1: (a) Explored phase space (Re,, Re;) of TC flow with independently
rotating inner and outer cylinder. Right of the horizontal axis the cylinders
are co-rotating, to the left of it they are counterrotating, and a log-log repre-
sentation has been chosen. The dashed lines are Esser and Grossmann’s [17]
estimate for the onset of turbulence with n = 0.71. The many data points in
the small Reynolds number regime of pattern formation and spatial temporal
chaos (see e.g. [18, 19, 20]) have not been included in this phase diagram. Our
data points of this publication are the black diamonds. (b) Our data points
in the phase diagram on a linear scale. (¢) Our data points in the phase space
(Ta, a); note that Ta also depends on a. (d) Our data points in the phase
space (Ta, Rq) (see eq. (1.7)).
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1.2 Results and Analysis

In this chapter we will focus on the required torque for fully developed tur-
bulent flow (Re;, Re, > 10°), where = 0.716 with independently rotating
inner and outer cylinder, which hitherto has not been explored. The examined
parameter space in this chapter is shown in the space of (Re;, Re,) in fig. 1b,
and (Ta, a) in fig. 1c, and (Ta, Rq) in fig. 1d to be explained below. We will
not address the question whether pure scaling laws exist: First, the explored
Reynolds number range is too short to answer this question, and second, the
earlier work [9, 8, 10, 12, 13, 1] gives overwhelming experimental and theoret-
ical evidence that there are no pure scaling laws even up to Reynolds numbers
of 105. So all scaling exponents in this chapter have to be read as effective
scaling laws.

1011 —

1010 L

109 |

Rei

Figure 1.2: The dimensionless torque G(Re;) for counterrotating TC flow for
four different fixed values of Re,/10° = —15, —8, —5, and 0 (top to bottom
data sets), see inset for the probed area of the parameter space.

Our results for the counterrotating case for the dimensionless torque G as
function of Re; for fixed Re, are shown in fig. 1.2. One immediately sees that
counterrotation enhances the torque (and thus the overall drag), but that for
general Re, # 0 the effective power law G Re}'m, that holds in the case of
inner cylinder rotating only, gets lost; in fact, there is even no effective power
law at all.

How to represent the data to better reveal the transport properties of the
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system? The analysis of Eckhardt et al. [1] and the analogy of the TC system
to the RB system suggest to better plot Nu,, as function of the Taylor number

1
Ta = Zodz(ri +76) 2 (wi — wo)?v 2, (1.4)

where o = (((1+1)/2)/\/n)*, i.e. along the diagonals
We = —awj (1.5)

in the parameter space fig. 1.1b. Indeed, Eckhardt et al. [1] derived from the
underlying Navier-Stokes equation the exact relation

€w = € — €lam = V3d74a*2Ta(Nuw —1) (1.6)

for the excess kinetic energy dissipation rate €, (i.e., total kinetic energy
dissipation rate € minus the kinetic energy dissipation rate in the laminar case
€lam = 4vrr2(ri + ro) 2d 3 (w; — wo)?. In eq. (1.6) o can be interpreted as
a (geometric) Prandtl number, and Ta and Nu,, are the exact TC analogs to
the Rayleigh and Nusselt number in RB flow. Along the diagonal, eq. (1.5)
in parameter space, one has Ta = %adQ(ri +70)2(1 + a)’w?r =2, and the well-
studied [6] effective scaling law Nu oc Ra? for RB flow (with 4 ~ 0.31 [22, 6])
now would correspond to an effective scaling law Nu,, o« Ta” for TC flow.
Nu,, vs. Ta is shown in fig. 1.3a for various a, i.e. along various straight
lines through the origin of the parameter space fig. 1.1b. An universal, i.e.
a-independent, effective scaling Nu,, o« Ta” with v ~ 0.38 is clearly revealed.
This corresponds to a scaling of G Reil'78 for the dimensionless torque along
the straight lines eq. (1.5) in the parameter space fig. 1.1, to ¢y o Re;0'24 for
the drag coefficient, and to G o« Ta%88. The compensated plots Nu,, /Ta%3® in
fig. 1.3b demonstrate the quality of the effective scaling and in addition show
the a-dependence of the prefactor of the scaling law.

That a-dependence of the prefactor Nu,/ Ta%3® is plotted in figure 1.4. It
shows a pronounced maximum around a = 0.4, i.e. for the moderately coun-
terrotating case, signaling the most efficient angular velocity transport from
the inner to the outer cylinder at that value. We mention that it is obvious
that this curve has a maximum, as in both limiting cases a — +oo (only
rotating of the outer cylinder) the flow is laminar and Nu,, = 1, but it is in-
teresting to note that the maximum does not occur for the most pronounced
counter-rotating case w, = —w; (or a = 1). Compared to the case of pure
inner cylinder rotation (a = 0), at a = 0.4 the angular velocity transport from
inner to outer cylinder is enhanced by more than 20%.
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Figure 1.3: (a) Nu, vs. Ta for various a; see fig. 1.1b for the location of

the data in parameter space. A universal effective scaling Nu, x Ta

0.38 is

revealed. The compensated plots Nu,,/Ta’3® in (b) show the quality of the
effective scaling and the a-dependent prefactor of the scaling law.
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Num Ta 038 am

Figure 1.4: Prefactor of the effective scaling law Nu,, oc Ta’3® (shown in fig.

1.3) as function of @ = —w,/w;. The inset shows the effective exponents =y
which results from an individual fit of the scaling law Nu,, o Ta”.

The parameter a = —w,/w; is connected to the so-called rotation number
Ro = (1 —n)(Re; + Rey)/(nRe, — Rey) (1.7)

introduced by Dubrulle et al. [16] and used by Ravelet et al. [15], namely
Ro = (1-n)n"Y(a—n)(a+1)"t. We also plot our data points in the phase
space of (Ta, Rq) as shown in fig. 1d. The optimal value a ~ 0.4 we found
for the transport properties of the system corresponds to Rq ~ —0.09. In this
chapter we prefer a as compared to R as the sign of a immediately signals
whether the system is corotating or counterrotating.

1.3 Conclusion

In conclusion, we have explored the terra incognita of fully developed tur-
bulent TC flow with independently rotating inner and outer cylinder, beyond
Reynolds numbers of 10, finding an universal effective scaling law G' oc Ta%8®,
corresponding to Nuy, oc Ta%38, for all (fixed) a = —w,/w;, with optimal trans-
port quantities at a =~ 0.4. It is remarkable that the effective scaling exponent
0.38 exactly resembles the analogous effective scaling exponent in Nu oc Ra%3®
in RB convection in the ultimate regime of thermal convection [23, 24], reflect-
ing the analogy between TC and RB flow also in the strongly turbulent regime.



The next steps will be to further extend the parameter space fig. 1.1 towards
higher radius ratios n to see whether the observed universality carries on
towards an even larger parameter range, and to also measure the Taylor-
Reynolds number and the wind Reynolds numbers of the internal flow, which
are closely connected to Nu,, and for which theoretical predictions exist [1].
With such measurements and characterizations of the flow structures we will
also be able to check whether these are reflected in the overall transport prop-
erties.






Ultimate turbulent Taylor-Couette flow®

The flow structure of strongly turbulent Taylor-Couette flow with Reynolds num-
bers up to Re; = 2 - 10° of the inner cylinder is experimentally examined with
high-speed particle image velocimetry (PIV). The wind Reynolds numbers Re,,
of the turbulent Taylor-vortex flow is found to scale as Re,, o Tal/2, exactly as
predicted [2] for the ultimate turbulence regime, in which the boundary layers
are turbulent. The dimensionless angular velocity flux has an effective scaling of
Nu, o< Ta%3®, also in correspondence with turbulence in the ultimate regime. The
scaling of Nu,, is confirmed by local angular velocity flux measurements extracted
from high-speed PIV measurements: though the flux shows huge fluctuations, its
spatial and temporal average nicely agrees with the result from the global torque
measurements.

°Published as: Sander G. Huisman, Dennis P.M. van Gils, Siegfried Grossman, Chao Sun,
and Detlef Lohse, Ultimate Turbulent Taylor-Couette Flow, Phys. Rev. Let. 108, 024501
(2012). This publication was selected as Editors’ Suggestion &, and was featured in a Physics
Viewpoint “The Twins of Turbulence Research” [25]. Experiments, analysis and writing are done
by Huisman, supervision by Sun, and Lohse. Proofread by everyone.
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2.1 Introduction

The Taylor-Couette (TC) system is one of the fundamental geometries con-
ceived in order to test theories in fluid dynamics. Fluid is confined between
two coaxial, differentially rotating cylinders. The system has been used to
measure viscosity, study hydrodynamic instabilities, pattern formation, and
the flow was found to have a very rich phase diagram [18]. In the fully tur-
bulent regime, the focus up to now has been on global transport quantities
[9, 8, 10, 26, 27|, which can be connected to the torque 7, which is necessary
to keep the inner cylinder rotating at constant angular velocity. In ref. [1]
the analogy between the angular velocity flux in TC turbulence and the heat
flux in Rayleigh-Bénard (RB, see ref. [6]) flow was worked out, suggesting to
express the former in terms of the Nusselt number, Nu,, which in ref. [26]
was found to have an effective scaling Nu,, oc Ta%38 with the Taylor number
(the analog to the Rayleigh number Ra in RB flow). Such effective scaling
Nu o Ra%38 characterizes the so-called ultimate scaling regime in RB flow
[23, 24, 28]. Following these papers, Grossmann and Lohse [2] have inter-
preted this scaling as signature of turbulent boundary layers. They derived
Nu o« Ral/? x log-corrections (RB) and Nu, oc Tal'/? x log-corrections (TC).
The log-corrections imply the effective scaling law exponent of 0.38. They also
made a prediction for the accompanying scaling of the wind Reynolds number
Rey, namely

Re, x Ral/?
and
Re,, o Tal/? (2.1)
for RB and TC turbulence, respectively. Here the logarithmic corrections re-
markably cancel out, in contrast to what Kraichnan had predicted [29] earlier,
namely
Re, o« Ra'/?(log Ra)~!/2
and
Rey, o Tal/?(log Ta) /2, (2.2)

which leads to an effective scaling exponent of about 0.47 in the relevant
turbulent regime. In order to verify the interpretation of ref. [2] and to check



2.2. EXPERIMENT 17

the prediction (2.1), local flow measurements are required to extract the wind
Reynolds number Re,,. However, what happens locally, inside the TC flow,
has up to now only been studied for relatively low Reynolds numbers Re < 10°,
and has been restricted to flow profiles and single-point statistics [14, 30, 19,
31, 32, 33, 9, 10, 34, 35, 36, 15].

In this chapter we supply local flow measurements from high-speed particle
image velocimetry (PIV) at strongly turbulent TC flow. From these we will
verify that indeed Re, o Tal/2. In addition, from the PIV measurements
we are able to also extract local angular velocity fluxes. These are found to
strongly fluctuate in time, but when averaged azimuthally, radially, and in
time, for the lower Ta show a slight axial dependence, which we interpret as
reminiscence of the turbulent Taylor vortices, and which nearly vanishes for
the largest Ta we achieve.

2.2 Experiment

The apparatus used for the experiments has an inner cylinder with a radius
of r; = 0.200 m, a transparent outer cylinder with an inner-radius of r, =
0.279 m, resulting in a gap-width of d = r, — r; = 0.079 m and a radius ratio
n = ri/ro = 0.716. The height is L = 0.927 m implying an aspect ratio of
I'=L/(r, —r;) = 11.7. More details regarding the experimental facility can
be found in ref. [21]. Here we focus on the case of inner cylinder rotation and
fixed outer cylinder. The local velocity is measured using PIV. We utilize the
viewing ports in the top plate of the apparatus to look at the flow from the
top. The flow is illuminated from the side using a pulsed Nd-YLF laser [37],
creating a horizontal laser sheet. The working fluid (water) is seeded with
20 um polyamide seeding particles, and is recorded using a high speed camera
[38]. The PIV system is operated in double-frame mode which allows us to have
a At far smaller than 1/f, where f is the frame rate. The PIV measurements
give us direct access to both the angular velocity w(6,r, z,t) = ug(0,r, z,t)/r
and the radial velocity w,(6,r, z,t), simultaneously.
From the latter we extract the wind Reynolds number as Re, = u,,d/v,
where u, , is the standard deviation of the radial velocity. In fig. 2.1 Re,, is
shown as a function of the Taylor number

1 2

Ta=-0o(r, — 7'1‘)2(72 + 7‘0)2(%‘ - Wo)2/’/ .

: (2.3)
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Figure 2.1: Re, vs. Ta. The data from repeated experiments at mid-height
are plotted as separate (blue) dots, showing the quality of the reproducibil-
ity and the statistical stationarity of the measurements. We have averaged
azimuthally, over time, and in the bulk flow (0.23m < r < 0.25m). The
straight line is the best fit Re,, = 0.0424Ta%495%0-010 3 the (red) dashed line
is the Kraichnan prediction [29] eq. (2.2). The inset shows the compensated
plot Re,/Ta'/? vs Ta. The horizontal (green) line is the prediction (2.1) of
ref. [2].

In refs. [1, 26] Ta had been suggested as most appropriate independent vari-
able of the TC system in order to work out the analogy with RB. Here
c=(1+ 77)/(2\/77))4 can be interpreted as a geometric “Prandtl number”
[1], wi, is the angular velocity of the inner and outer cylinder, respectively,
and v is the kinematic viscosity. Note that Ta o< (w; — w,)?: while Ra in
RB convection is proportional to the temperature difference times the given
gravity force, Ta in TC flow is proportional to the angular velocity differ-
ence w; — w, times the centrifugal force, which itself is also proportional to
w; — Wy, implying the square-dependence. Therefore, by definition, the two
control parameters Re; (refering to the imposed azimuthal velocity) and Ta
are connected by Re; ~ Tal/2, but such a trivial relation of course does not
exist between the wind Reynolds number Re,, and Ta (which is a response of
the systems and refers to the radial velocity).
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2.3 Analysis and Results

Fig. 2.1 reveals a clear scaling of the wind Reynolds number with the Taylor
number, namely Re,, oc Ta%4%%0-010 which is consistent with the prediction
[2] Rey Ta'/2 for the ultimate TC regime, but inconsistent with Kraichnan’s
earlier prediction (2.2) of a scaling exponent 1/2 with logarithmic corrections
[29]. For comparision, we included this relation into fig. 2.1, which clearly is
inconsistent with the experimental data. We stress that the cancellation of
the log-correction for Re, as suggested in [2] is highly non-trivial and that
in RB flow in the non-ultimate regimes the wind Reynolds number scales as
Re,, ~ Ra%* [39], pronouncedly different than the 1/2 exponent we find here
in the ultimate regime. Only very recently the wind Reynolds number scaling
in ultimate RB flow could be measured, also finding Re,, ~ Ral/? [40] as
predicted in ref. [2].
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Next, as the PIV measurements give us both the angular velocity and the radial
velocity (w(0,r, z,t) and u,(0,r, z,t) respectively), we can directly calculate
the (total) angular velocity flux (convective + molecular)

J0, 7, 2,t) == 13 (upw — vOw), (2.4)

which is made dimensionless with its value for the laminar infinite aspect ratio

case, Ji2 = 2ur?ri(w; — w,)/(r2 — r?), giving [1] the local “Nusselt number”

Nu, (0,7, 2,t) = J“(0,r, 2, t) | Jjan-

Indeed, as shown in ref. [1], the angular velocity is the relevant quantity trans-
ported from the inner to the outer cylinder, as its flux (2.4) is radially con-
served, once it is averaged azimuthally, axially, and over time,

4 (JYO0,1,2,t)9,, =0

dr T2 0)10,20 = Y
In the turbulent regime the convective term is the major contributor to the
flux in the bulk [41].
In fig. 2.2a we show a snapshot of Nu(f,r) at mid-height z = L/2 for Ta =
1.5 - 10'2. The quantity shows huge fluctuations, ranging from +10° to —10°
and beyond, whereas the average (Nu,, (0, r, t)>97r7t = 325 is very close to the

value Nugl°® = 326 4 6 obtained from global torque measurements [26]. The
local flux can thus be more than +300 times as large as the mean flux. Large
fluctuations have also been reported for the local heat-flux in RB flow [42],
but in that case the largest fluctuations were only 25 times larger than the
mean flux.

After azimuthal and time averages, (Nuy(0,7,t))y,, the fluctuations nearly
vanish, see fig. 2.2b (revealing some radial and height dependence for fixed
Ta = 1.5 - 10'2, presumably reminisent of the Taylor vortices) and fig. 2.2c,
where we show the local angular velocity flux r’-profiles for rotation rates from
w;/(2m) = 0.5 Hz to 20 Hz, corresponding to Ta = 3.8 - 10° to 6.2 - 102,
Each profile is based on azimuthal averaging, radial binning, and averaging
over 3200 frames (corresponding to 25.6 rotations for the three lowest rotation
rates, and 32, 64, and 128 rotations for the fastest rotations rates). For each
rotation rate repeated experiments have been performed and the profiles are
reproducible. Only in one case the turbulent Taylor vortex flow seems to be in
a different state(s). From fig. 2.2¢c we conclude that the spread in the repeated
experiments decreases with increasing Ta, for which the Taylor vortex struc-
ture will be more and more washed out. In addition, for increasing Ta, not
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only do we measure during more revolutions, but also the transverse velocity
increases, both improving the statistics. The dashed lines in fig. 2.2¢ corre-
spond to the measured global transport for the three highest rotation rates;
these values were obtained from the torque measurements [26] and show al-
ready good agreement with our local measurements.
An additional azial average is necessary to obtain the exact relation between
Nu,, and the global torque 7 required to drive the inner cylinder at constant
velocity [1],

T =2mLpJipn, (Nuw)g , ;- (2.5)

It is the lack of sufficient axial averaging, which accounts for the small de-
viations between (Nu,(6,2,t))y,., and Nugl®. Indeed, due to the Taylor-
vortex structure of the TC flow one would expect some axial dependence
of (Nu, (0,7, 2,t)) 9.r.¢> Which should become weaker with increasing degree of
turbulence and thus increasing Ta, just as fig. 2.2c suggests. This picture is
confirmed in figure 2.3. Here we present local measurements of the convective
angular velocity flux for varying rotation rates, resulting in a Taylor number
range of 3.8 - 10°-6.2 - 10'2. For each Taylor number we performed multiple
experiments and measured the Nu,, transport at mid-height. The blue points
are results obtained from PIV measurements at mid-height, where the length
of the bars indicate the error obtained from the repeated experiments. The
green and orange points are repeated measurements at z = L/2 4+ d/2 and
z = L/2 + d, respectively. An effective scaling Nu,, Tal45+0.04 5 revealed
for the blue data points, while a scaling of Nu,, oc Ta%39+0:98 ig revealed for
the orange data points.

It is remarkable how the flow provides angular velocity transport from the
inner to the outer cylinder, in spite of the fluctuative nature, which are seen
in figure 2.2a. In fig. 2.4 we provide a statistical analysis of these fluctuations:
While the probability distribution functions (PDFs) of the angular velocity
(fig. 2.4a) and the radial velocity (fig. 2.4b) are nearly symmetric, the PDF of
their product r3u,w o Nu,, (fig. 2.4c) is clearly positively skewed. Indeed, the
cross-correlation coefficient of u, and w (fig. 2.4d) is relatively large.

We note that thanks to the PIV measurements of the full velocity field, the
extraction of the local angular velocity flux Nu, (6,7, 2,t) < wu, is easier in
TC as compared to the analog temperature flux Nu(Z,t) oc Tu, in RB flow: in
order to obtain this latter quantity locally, one has to measure the temperature
T and the velocity simultaneously. Because a high-precision field measurement
of the temperature is presently not possible and thus not available, the best
one can do for RB flow is to measure Nu(Z,t) point by point [42, 43] or use
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Figure 2.3: Local convective angular velocity flux as a function of Taylor
number. The blue dots are results obtained from PIV measurements and
show a scaling of Nu,, oc Ta%#%0:94  The green and orange dots are repeated
measurements at a height of z = L/2+d/2 and z = L/2+d, respectively. The
black data points are obtained from global torque measurements and show a
scaling that is less steep: Nu,, o Ta’3®. The dashed green line is obtained by
matching two log-layers [8], and has a scaling exponent of 0.37 at Ta = 107,
and 0.41 at Ta = 10'3. The red line is from the turbulent boundary layer
theory of ref. [2]. It has a scaling exponent of 0.43 around Ta = 10° and 0.44
around Ta = 10'3. Dark red data points are obtained by means of global
torque measurements [10].

an instrumented tracer [44].

2.4 Conclusion

In conclusion, from high-speed PIV measurements we have found the wind
Reynolds number in strongly turbulent TC flow to scale as Re,, oc Ta0-49540-010,
in accordance with the theory of ref. [2] and in conflict with Kraichnan’s [29]
prediction (2.2). In addition, we extracted the local angular velocity flux and
found that Nu, o Ta” with v ~ 0.39 — 0.45 depending on the axial position
and consistent with earlier global torque measurements [26, 27]. For increasing
Ta, a small axial dependence of Nu,, is fading away, reflecting the decreasing
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Figure 2.4: Results of three experiment with varying rotation rate result-
ing in Ta = 3.8 - 10, 1.5 - 10'2, and 6.2 - 10'2, colored in red, green,
and blue, respectively. All the data shown is averaged over the region
0.23 m < r < 0.25 m, and measured at mid-height. All quantities with tildes
are standardized (shifted and scaled such as to have zero mean and unit vari-
ance). (a) PDF of the standardized angular velocity. (b) PDF of the stan-
dardized radial velocity. (c¢) Standardized normalized local convective angular
velocity flux PDF. (d) Cross-correlation coefficient of the angular velocity and
the radial velocity, the dimensionless decaying time (in number of rotations) is
found to be 0.07. The corresponding length scale can be found by multiplying
this number with the circumference of the inner cylinder giving 6 = 88 mm,
which is of the same order of magnitude as the gap width d = 80 mm.

importance of the Taylor vortices. The next step will be to provide full velocity
and angular velocity profile measurements, including those in the boundary
layers, and to extend the present measurements to the counter-rotating case
and other radii ratios 7, in order to further theoretically understand the lo-
cal flow organization and the interplay between bulk and boundary layers in
turbulent TC flow. A further highly interesting support for the presented
idea of the close correspondence between the TC angular velocity transport in
the studied Ta-range with the ultimate range of RB thermal convection is to
identify the onset of this ultimate range when increasing Ta; here we expect
a change of the Nu, scaling exponent and also a transitional change in the
widths and profiles of the BLs.



Logarithmic boundary layers in strong
Taylor-Couette turbulence®

We provide direct measurements of the boundary layer properties in highly tur-
bulent Taylor-Couette flow up to Re = 2 - 10%(Ta = 6.2 - 10'?) using high-
resolution particle image velocimetry and particle tracking velocimetry; PIV and
PTV, respectively. We find that the mean azimuthal velocity profile at the inner
and outer cylinder can be fitted by the von Karman log law u* = 2Iny* + B.
The von Karman constant « is found to depend on the driving strength Ta and
for large Ta asymptotically approaches x ~ 0.40. The variance profiles of the
local azimuthal velocity have a universal peak around ¥ ~ 12 and collapse when
rescaled with the driving velocity (and not with the friction velocity), displaying a
log-dependence of y™ as also found for channel and pipe flows.

°Published as: Sander G. Huisman, Sven Scharnowski, Christian Cierpka, Christian J. Kahler,
Detlef Lohse, and Chao Sun Logarithmic boundary layers in strong Taylor-Couette turbulence,
Phys. Rev. Let. 110, 264501 (2013). Experiments performed by Huisman, Scharnowski, and
Cierpka. Vector calculation and preliminary analysis done by Scharnowski and Cierpka. Further
analysis, plotting, and writing of the manuscript done by Huisman. Supervision by Kahler, Lohse,
and Sun. Proofread by everyone.
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3.1 Introduction

Taylor-Couette (TC) flow is one of the paradigmatical flows in physics of flu-
ids next to Rayleigh-Bénard convection, channel, flat plate, and pipe flow.
It comsists of two rotating coaxial cylinders shearing a fluid in between the
cylinders, see fig. 3.1. For only inner cylinder rotation the Reynolds number
Re = w;ri(r, — r;)/v quantifies the driving of this system. It is closely con-
nected to the Taylor number Ta = %(?7%)4(7"0 —13)2(r; +15)%w? /12, the ratio
of centrifugal forces to viscous forces. Here, w = uy/r is the angular velocity
component, r the radius, v the kinematic viscosity, n = r;/r, the radius ratio,
and ¢ and o subscripts denote quantities related to the inner and outer cylin-
der, respectively. For increasing Re the system is first dominated by coherent
structures [18] whose length scale is of similar size as the gap width. For fur-
ther increasing Re turbulence develops in the bulk at length scales between
the integral and the Kolmogorov scale while the boundary layers are still of
laminar type. This regime, in which the flow has a turbulent bulk and the
boundary layers are of Prandtl-Blasius type, is called the classical regime [45].
By further increasing Re the system enters the so-called ultimate turbulent
state in which also the boundary layers have turned turbulent [29, 2, 46, 47].
Note that vortical structures appear at the first transition above a critical Ta
[48] and continue to persist within the ultimate regime [10, 49]. Based on
global transport measurements, the ultimate regime of turbulence sets in at
Re(Ta) ~ 104(108) [9, 10, 41].

The coexistence of a laminar-type boundary layer and turbulent bulk in classi-
cal turbulent Rayleigh Bénard (RB) convection has been well established from
numerous experimental and numerical investigations [50, 6, 7, 51]. This is also
the case for the classical regime in TC flow [14, 31, 52, 10, 53] and the transi-
tion regime to ultimate TC flow [54, 55, 56]. Recently, a direct measurement
[57] of the mean temperature profile close to the wall in the ultimate RB state
revealed logarithmic behavior in the ultimate regime. For pipe, flat plate, and
channel flows numerous experiments have revealed the existence of a log layer
for the velocity and its variance see e.g. [58, 59, 60, 61, 62].

Neither for TC nor for RB there had been any direct and systematical mea-
surement of the velocity boundary layer in the highly turbulent ultimate state
due to the experimental difficulties. Assuming a logarithmic velocity profile
in the boundary layers for highly turbulent TC flow, and matching the mean
velocities at midgap, Lathrop et al. [9, 63] obtained a dependence of the
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global torque and the Re, which agrees well with the torque measurements in
the ultimate turbulence regime [9, 63, 64]. Only recently direct measurements
on boundary layers were conducted by van Hout and Katz [54] for Ta up to
2 - 10%, where they focused on the effect of counterrotation and found that
the von Kérman constant depends on the angular velocity ratio w,/w;.

In this chapter we report the direct systematical experimental investigation
of the boundary layer properties for very high Ta from Ta = 9.9 - 10® to
Ta = 6.2 - 102 using high resolution PTV and PIV [65, 66, 67] with an
unprecedented spatial resolution down to &~ 10 um. We focus on the case
of inner cylinder rotation, and examine the boundary layer properties as a
function of Re (Ta) in the ultimate turbulent TC regime.

IC |BL| Bulk |BLJOC]

—a ]

Figure 3.1: Sketch of the vertical cross section of the T3C [21]. The flow
is illuminated from the side in the horizontal plane using a laser, and the
flow is imaged from the top using a high-resolution camera. Top-right inset:
Schematic top view of different regions inside the gap: IC (inner cylinder),
OC (outer cylinder), and BL (boundary layer). Measurements were done at
midheight.

It was mathematically found [1] from the Navier-Stokes and continuity equa-
tions that J, = r3((u,w), g, — v, (W), 4,) is strictly conserved in TC flow.
Here (X), 0+ represents ayéiél, azimuthai,’and time averaging of X and w, is
the radial velocity. This transport quantity is independent of r; any flux go-
ing through an imaginary cylinder with radius r also goes through any other
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imaginary cylinder, or mathematically 9,.J, = 0. This flux can be measured
locally [68, 64] but also globally [9, 27, 26, 69] by measuring the torque needed
to sustain constant velocity of the cylinders. The torque 7 is related to the
dimensionless torque G and to J,, as follows:

T Jw
- B 3.1
2lpr? V2 (3.1)
where p is the density of the fluid, and ¢ the height of the cylinders. We can
further relate these quantities to the wall shear stress 7,,, the friction velocity

ur, and the viscous length scale §, at the inner cylinder wall:

T
w,i — .2
Tw, 2mr2l (32)
Uri = \[Tw,i/P (3.3)
dvi=0/ur;. (3.4)

Note that as J, is conserved radially, it is the same at both cylinders, and
using eq. (3.1), also the torque 7 at both cylinders is the same. Consequently,
Tw, Ur, and d, are different at the inner and outer cylinder, and the following
relations hold:

Twi/Two = 1/1° (3.5)
Uri/Uro =1/ (3.6)
51/,@'/51/,0 =n

3.2 Experiments and Results

The apparatus used for the experiments, the Twente turbulent Taylor-Couette
(T3C), has an inner cylinder with an outer radius of 7; = 0.200 m, a trans-
parent outer cylinder with inner radius r, = 0.279 m, giving a radius ratio of
n = 0.716. The cylinders have a height of ¢ = 0.927 m, resulting in an aspect
ratio of I' = ¢/(r, — r;) = 11.7. More details can be found in ref. [21]. For the
PIV and PTV measurements, the working fluid (water) is seeded with fluores-
cent polymer particles [70]. Using a laser [71] we create a horizontal light sheet
of roughly 500 pm thickness for illumination. The flow is then imaged from
the top (see fig. 3.1) using a high-resolution camera [72] with large dynamical
range.
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Figure 3.2: Azimuthal velocity profiles for varying Re(Ta) across the gap of the
TC apparatus. The legend indicates Re(Ta) of the experiments. Insets a and
b show a zoom of the data of the inner and outer boundary layer, respectively.
Individual data points are plotted in the insets showing the high resolution of
the measurements. The gray solid line represents the exact laminar circular-
Couette (nonvortical) solution of the Navier-Stokes equations. The dashed
line is the profile for Re(Ta) = 260(10°), obtained from DNS [55].
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For each rotational velocity, 10* image pairs were acquired at a recording fre-
quency of 10 Hz. The mean velocity distribution was computed using single-
pixel ensemble correlation. This technique [73, 65] leads to a final resolution
of ~ 150 um and in over 500 independent datapoints in the 80 mm gap. The
standard deviation was directly computed from the velocity probability den-
sity function, which was extracted from the shape of the correlation function,
as discussed in ref. [67]. This procedure ensures that all turbulent scales are in-
cluded in the standard deviation. In contrast to standard PIV analysis, where
only spatially low-pass filtered results are achieved, here also the contribution
of the small scale fluctuations are properly considered. In order to resolve the
near wall-region at the inner cylinder, a microscope [74] was mounted in front
of the camera. With this setup, a scaling factor of ~ 10 pm/px was achieved.
To maximize the spatial resolution the near-wall region was evaluated with
PTV methods, which is best suited for this purpose [66].

Fig. 3.2 shows all the measured mid-height profiles; five covering the full gap,
and two covering just the region near the inner cylinder. As expected, the
profiles do not conform to the laminar nonvortical profile, and the bulk has a
much shallower slope due to turbulent mixing as the bulk flow in our parameter
regime is fully turbulent [10, 64]. As a comparison, we included the profile
for one of the first vortical flows, Re = 260 [55]. For the laminar axially
independent solution, the convective part of J, is zero; any convection in the
bulk of the system therefore decreases the 0.w term in the bulk, resulting in
a shallower angular velocity gradient. From the insets we can clearly see that
for increasing Re(Ta) the boundary layers become steeper, and indeed the
angular velocity profile has then to become steeper as u, in J, is zero at the
wall, and we are only left with the term 0,w. We now split our data in two
parts: 1’ € [0,1/2] (inner boundary layer) and r’ € [1/2,1] (outer boundary
layer) and normalize velocities with the appropriate u, (egs. (3.3) and (3.6))
and distances with the respective §, (egs. (3.4) and (3.7)), see fig. 3.3. We
used global torque measurements [10, 26] to find u, and d,. We spatially
resolved the viscous sublayer (y™ < 5) for the lowest Re. It is known that in
this viscous sublayer the velocity profile follows u+ = y*. This concept also
applies to TC flow, as supported by numerical simulations at low Re(Ta) (see
e.g. ref. [55]). It should be noted that global torque measurements provide
an average torque 7, while the local torque depends on height (following the
large-scale Taylor vortex structure). So while eq. (3.2) holds for the average
Tw,i, it might have an axial dependence. However, it has been found [41] that
the azimuthal velocity at mid gap only has a weak axial dependence of the
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order of ~ 1% for a = 0. To normalize the velocity profiles, we used the
globally measured torque (as only this quantity is available for all Re(Ta)
with sufficient precision) and thus the average 7, ;; this causes the imperfect
matching of ut = yT.

In flat turbulent boundary layer flows, at y* > 50 the effects of viscosity
diminish. Furthermore, as suggested by Prandtl and von Kérman [75], in this
limit the velocity profile converges to:

1
ut = —Iny* + B, (3.8)
KR

with x the von Karmén constant and B the logarithmic intercept. We will
now apply this concept to TC flow.

Re
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Figure 3.4: The parameter x obtained by fitting u™ = %ln y*T + B for yT €
[50,600] near the inner and outer cylinder. The color scheme is identical to
figures 3.2 and 3.3, the black symbols are DNS results [55]. The solid colored
line shows the ratio of the upper edge 6000, of the fitting regime to the radius
of curvature of the cylinder, quantifying the relative influence of the curvature.
Note that 6,/ = du.0/70.

Outside the viscous wall region y* > 50 (inside the outer layer) fig. 3.3 shows
the existence of a log-layer in the ultimate TC regime (Ta > 10%), which is in
sharp contrast to the laminar boundary layers found in the DNS simulations
[55] (indicated by thin lines) in the classical turbulent regime. Our profiles are
fitted to eq. (3.8) over the interval y* € [50,600] (see the shaded area in fig.
3.3). We have chosen y* = 50 as lower edge of the interval as it is the start
of the outer region, and the upper edge ¥ = 600 corresponds to about mid
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gap ((r; +r,)/2) for our lowest Re(Ta) and the edge of the log-regime for our
highest Re(Ta), see figure 3.3, but we stress that the values for x and B only
weakly depend on the exact extension of the fitting interval, as already found
for pipe flow [61]. The values for s are shown in fig. 3.4. They are different
for the inner and outer boundary layer and depend on Re(Ta). For increasing
Re(Ta), we see that the values for the inner boundary layer approach a value
of k =~ 0.40, close to the known classical value of k = 0.40 [60, 62], recently
systematically examined by Marusic et al. [61].

For the smaller Re(Ta) the value for k is larger as the log-layer is not yet
fully developed, as clearly seen from fig. 3.3. However, also geometric effects,
namely the curvature of the cylinder, may contribute to this deviation. To
quantify this effect, we plot the ratio of the outer edge (600d,) of the fitting
regime to the radius of curvature of the cylinder, see fig. 3.4, from which
we conclude that for high Re > 10° the effect of the curvature becomes less
than 1%, i.e. negligible. Finally we note that due to a possible slight height
dependence of 7, ; caused by the Taylor vortices even for this very turbulent
flow, and the resulting imperfect matching of u™ = y™, the values of x and B
could still vary slightly with height.

In addition to PIV, also high resolution PTV measurements and analysis have
been performed. For these measurement we zoomed into the area near the
inner cylinder using a long-distance microscope to obtain a scaling factor of
~ 10 um/px. The spatial resolution of PTV depends on the number of images,
and can thus be better than the pixel grid spacing projected in to physical
space [65]. We extract the variance o%(ug) from the shape of the probability
density function of the correlation function [67], see fig. 3.5. We normalize
o(ug)? with the friction velocity u, (see fig. 3.5a) and with the driving velocity
u(r;) (see fig. 3.5b). For both curves the maximum of o (ugy)? is around y™ = 12,
which is remarkably similar to the values obtained in pipe and channel flows
(see e.g. [59, 60]). In addition, it can be observed that the collapse of the
data is better when we normalize o(ug) with the driving velocity rather than
the shear velocity u,. Opposed to the profiles shown in fig. 3.3 in the outer
layer (y™ > 50) the variance profiles universally collapse inside the buffer
layer (5 < y™ < 30) and seem not to depend on Re(Ta), vortical structure,
and streamwise curvature. As shown in fig. 3.5a, we fit the data for y* > 50
(outer layer) with (o(ug)/u,)? = By — AjInyT—the log law for the velocity
variance [62]. The corresponding fitting parameters are indicated in fig. 3.5a.
Remarkably, the slope A; (varying from 1.26 to 1.45) is comparable with values
found (A; ~ 1.25) in high Re boundary layer flows [62].
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Figure 3.5: (a) The variance of the local azimuthal velocity is presented as
a function of radial distance from the inner cylinder. The velocity is made
dimensionless using the friction velocity w,, and the distance is in wall-units
yt = (r—ri) /0,. (b) Same as in fig. a but the velocity has been rescaled using
the driving velocity wu(r;). Corresponding colors in figs. a and b correspond
to the same data-set, and are consistent with previous figures. The Re(Ta)
are indicated with arrows in figure a. For y* > 50 the five highest Ta cases
are fitted with (o (ug)/u,)? = By — Ay Iny*. The fitting parameters are listed
inside fig. a for increasing Ta and colored accordingly.



3.3 Summary

To summarize, we performed direct measurements of the velocity boundary
layer profiles in highly turbulent TC flow up to Ta = 6.2 - 10'2 and found
the emergence of a log layer, as theoretically proposed in refs. [29, 2]. The
fitted von Karmén constant s was found to approach the classical value of
0.40 for large enough Ta. Furthermore, we found that the peak in o(ug)
universally collapses around y™ = 12, and that the height of the peak is found
to collapse better when scaled with the driving velocity as compared to the
friction velocity. Lastly, the variance profiles depicted a log dependence for
yT > 50.
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Multiple states in highly turbulent Taylor-Couette
flow®

The ubiquity of turbulent flows in nature and technology makes it of utmost im-
portance to fundamentally understand turbulence. Kolmogorov's 1941 paradigm
suggests that for strongly turbulent flows with many degrees of freedom and its
large fluctuations, there would only be one turbulent state as the large fluctua-
tions would explore the entire higher dimensional phase space. Here we report the
first conclusive evidence of multiple turbulent states for large Reynolds number
Re = O(10°) (Taylor number Ta = O(10'2)) Taylor-Couette flow in the regime of
ultimate turbulence, by probing the phase space spanned by the rotation rates of
the inner and outer cylinder. The manifestation of multiple turbulent states is ex-
emplified by providing combined global torque- and local-velocity measurements.
This result verifies the notion that bifurcations can occur in high-dimensional flows
(that is, very large Re) and questions Kolmogorov's paradigm.

°Published as: Sander G. Huisman, Roeland C.A. van der Veen, Chao Sun, and Detlef Lohse,
Multiple states in highly turbulent Taylor-Couette flow, Nat. Commun. 5, (2014). Experiments,
and analysis performed by Huisman and van der Veen. Plotting and writing of the manuscript
done by Huisman. Supervision by Sun and Lohse, and proofread by everyone.
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4.1 Introduction

For macroscopic flows of water or air the Reynolds number is much larger than
unity; the standard type of flow is therefore turbulent. A typical Reynolds
number for a person walking is already (O(10°). For large airplanes the
Reynolds number is O(10%), for atmospheric currents it is O(10'%), and for
ocean currents it is @(10''). Reynolds numbers are even larger for astrophysi-
cal problems [76]. It is not possible to achieve these large Reynolds numbers in
a lab-environment nor is it accessible by direct-numerical simulations (DNS).
To extrapolate data from Re = O(10°) to the scales of our atmosphere or the
ocean we must bridge 4-5 decades in Reynolds number, and even more for
astrophysical applications [77]. While scaling laws exist that can predict the
rough magnitude of these flows, they are rendered impractical if there is a
flow-transition from a turbulent state at lower Re to another turbulent state
at higher Re, or if multiple turbulent states can coexist at the same Re. To
extrapolate to large scales we need to know whether there are transitions and
whether multiple states can coexist in high Reynolds number flows. As an
answer to this question, Kolmogorov’s more than 70-year-old paradigm states
that for large Reynolds numbers, flows would become ‘featureless’ due to the
fact that the highly-dimensional phase space is explored in its entirety due to
the large fluctuations of said flows [78, 79].

For Rayleigh-Bénard convection at low Rayleigh number (laminar-type bound-
ary layers, Ra < 10'%), continuous switching between two different roll states,
with different heat transfer properties, was found [80, 81, 82]. In this case,
the turbulent fluctuations were large enough to overcome trapping in one tur-
bulent state. In the case of high Rayleigh number (turbulent boundary lay-
ers), no multiple states have been observed in a single setup; only when the
boundary conditions were changed one could trigger a transition to a differ-
ent state [83, 2]. For von Karman flow multiple turbulent states were found
when driving it with impellors with curved blades [84, 85, 86]. These stud-
ies revealed the spontaneous symmetry-breaking and turbulent bifurcations
in highly turbulent von Karmén flow up to Re = 10%. In spherical-Couette
flow Zimmerman et al. [87] observed spontaneous switching between two tur-
bulent states at fixed rotation rates. The presence of coherent structures at
high Reynolds numbers in closed systems suggests that Kolmogorov’s hypoth-
esis [78, 79] is incomplete [84, 85, 86, 87] and might need revisiting in order
to apply to these flow systems. For Taylor-Couette multiple states are only
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observed for low Re (see e.g. ref. [18])—the so-called classical regime, where
the bulk is laminar or turbulent but the boundary layers are still of lami-
nar type. Around Re ~ 10 [55, 88] the system transitions into the ultimate
state [29, 8, 2|, in which the boundary layers are also turbulent [89], and where
new scaling laws of the response parameters set in [15, 26, 27, 41, 64, 55, 56, 69].
Historically, this ultimate regime was defined based on the scaling properties
of the flow [29]. Consequently, it does not necessarily exclude the existence
of multiple turbulent states. To correctly extrapolate to much higher Re it is
crucial to know the characteristics of the turbulent state and the existence of
other such states. In ref. [90] it was shown that for increasing Re the waves on
top of the Taylor vortices become increasingly complex until only turbulent
Taylor vortices are left. Lewis et al. [10] came to the same conclusion by plot-
ting the velocity power spectra for increasing Re up to 5 - 10°, and observed
that the peaks gradually decrease in amplitude. They noted that turbulent
Taylor vortices remained. On the other hand, the findings of Lathrop et al. [8]
suggest that the Taylor-vortices are not present for Reynolds numbers beyond
1.2 - 10°.

Here we demonstrate that roll structures remain for Taylor-Couette flow even
in the ultimate regime up to at least Re = (O(10°) and show that multiple
states are even possible far beyond the transition into this ultimate regime.

LDA

R e

Figure 4.1: Experimental apparatus. Schematic of the cross section of the
T3C [21]: the apparatus has been outfitted with a new coaxial torque trans-
ducer (shown in red), see the Methods section. The azimuthal velocity is
probed at the middle of the gap and in the top half of the apparatus using
laser Doppler anemometry (LDA).
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Figure 4.2: Phase space of the trajectories I to V. The arrows indicate the
direction in which the phase space is probed. The legend shows which param-
eter is kept constant, whether the parameter a = —f,/ f; is going down (a |)
or up (a 1), and the number of times it went to a high (Hi) or a low (Lo)
state. All trajectories go through (or end at) f; = 5.882 Hz, f, = —2.118 Hz
(a = 0.36, and Ta ~ 10'? or Re ~ 109).

4.2 Results

For TC flow [26, 27, 41, 64, 55, 56, 69] and using the analogy of TC flow with
Rayleigh-Bénard (RB) convection [45] it was found that the Taylor number
Ta = i(%)‘l(m —13)%(ri + 7o)} (wi — wo)?/V? is a very well suited parameter
to describe the driving of the system [1]. Here w;, = 27 f;, are the angular
rotation rates and v the kinematic viscosity. The response of the system is
the torque required to sustain constant angular velocity or a ‘Nusselt’ num-
ber [1], Nu, = 7/Tjam, which is the angular velocity flux nondimensionalised
with the flux of the laminar, nonvortical, flow. This Nusselt number scales
approximately as Nu, oc Ta%3® [26, 27] around Ta = 10'2, which is inter-
preted as Nu,, o« Tal/? - Log-corrections [29, 2]. We now find with our new
sensor with improved accuracy that the exponent is closer to 0.40 (results not
shown), which is still consistent with the aforementioned interpretation. The
Twente Turbulent Taylor-Couette facility (T>C) [21] was used for the experi-
ments, see fig. 4.1. The T3C [21] has an inner cylinder with an outer radius
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of r; = 200 mm, a transparent outer cylinder with inner radius r, = 279 mm,
and a height of L = 927 mm, giving a radius ratio of n = r;/r, = 0.716 and
an aspect ratio of I' = L/(r, — r;) = 11.7. The top and bottom caps rotate
along with the outer cylinder. The apparatus was filled with water and ac-
tively cooled to keep the temperature constant. The torque is measured on
the middle section of the inner cylinder using a new co-axial torque transducer
(Honeywell 2404-2K, maximum capacity of 225 Nm), with improved accuracy
compared to our former load cell [26]. The azimuthal velocity is obtained by
laser Doppler anemometry (LDA), see fig. 4.1. The laser beams go through
the outer cylinder and are focused in the middle of the gap, see fig. 4.1 The
water is seeded with 5 pm diameter polyamide tracer particles (Dantec) with
a maximum Stokes number of St = 7,/nx = 0.004 < 1. Curvature effects
of the outer cylinder to our LDA system are accounted for by numerically
ray-tracing the LDA-beams [91].

First we follow trajectory I and V shown in the parameter space of fig. 4.2,
which have as a characteristic that f; — f, = 8 Hz is kept constant (ex-
cept for the initial and the final part) and is equivalent to approximately
Ta = 10'2 or Re = (wir; — woro)(1o — 1i)/v = O(10°). While traversing
the trajectory we continuously measure the torque, scanning over a in one
experiment. This is in contrast to experiments that were performed before,
where the torque was measured by performing separate ramps of constant
a=—fo/fi [8, 26, 27, 41, 69]. We slowly follow a trajectory in phase space,
such as to be in a statistically quasi-steady state the entire time [26]. The
temperature variation within the system is 0.04 K, the variation during each
measurement is 0.3 K, and the mean temperature for each run is between
19 °C and 24 °C. The Taylor number depends on viscosity and thus tempera-
ture; we therefore remove the main temperature dependence by compensating
the Nusselt number with Ta’4, because Nu,, o« Ta%# in the present parameter
regime. This approach has been followed before, see e.g. [26, 27].

As can be seen in figure 4.3, for increasing a (red shades, trajectory V), the
torque is continuous and shows a peak around a = 0.36, as found before [26,
27, 41, 69]. For trajectory I the torque is found to be the same as trajectory V
for a < 0.17 and a > 0.51, however for 0.17 < a < 0.51 the torque is found to
be different. For decreasing a the system is able to enter another state around
a = 0.51 which is characterised by a lower torque (from here on called ‘low
state’), around a = 0.17 the system sharply jumps back to a higher torque
state (‘high state’), see also the close up view in figure 4.4. We have repeated
these experiments in order to see how sharp this transition is, and to see in
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which state the system is, see fig. 4.2. For trajectory V we observe that it
always goes into the high state, while for the reverse trajectory I the system
goes to the low state (for 0.17 < a < 0.51) with a high probability (8 out of
10).

To verify that the high and low torque states originate from two different
physical states, we measure the azimuthal velocity at half-height z = L/2 and
center of the gap r = (r; + 7)/2, while the system is let to move along tra-
jectories I and V in phase space, see fig. 4.3b. As in fig. 4.3a, it is found that
the local velocity inside the system bifurcates and that two states are possible.
The presence of multiple states in a local measurement (azimuthal velocity)
and at the same time a global measurement (torque) provides convincing evi-
dence that the system can indeed be in different turbulent states, despite the
very high Taylor number of O(10'2) (ultimate regime).

To further characterize the turbulent state of the system, we perform axial
scans of the azimuthal velocity in the top half of our apparatus for several a
for both the high and the low state, see figures 4.3c and 4.3d. For each a the
azimuthal velocity is standardized (zero mean, unit standard deviation) and
color-coded. Fig. 4.3c shows the local velocity for the high state (trajectory
V), and shows the presence of 5 large minima/maxima for a < 0.45; a clear
characteristic of 4 turbulent Taylor vortices. For a > 0.5 the state of the
system is less clear, and the system appears to jump between states (without
a well-defined a-dependence), as seen in the local velocity in fig. 4.3b. This
behavior looks similar to what was found in RB convection in the classical tur-
bulent regime [82]. However, the mechanism is different owing to the shorter
turnover time scale of the TC system, and the presence of the additional
control parameter a in TC, with which we can control the transition. Fur-
thermore, the observed transition is different from Ref. [87] where spontaneous
switching back and forth between two states was found, based on global and
local measurements. Fig. 4.3d shows the same switching behavior as the high
state of fig. 4.3c for a outside [0.17,0.51]. For 0.17 < a < 0.51 it is found that
the azimuthal velocity has 4 large minima/maxima, which is the signature of
3 turbulent Taylor vortices (in the top half of the system).

In addition, we provide, for selected a, the angular velocity profiles as lines
in fig. 4.5. The angular profiles for trajectories I and V are identical (within
experimental and statistical error) for a outside [0.17,0.51]. For a € [0.17,0.51]
the profiles are different and show distinguishing features of 3 or 4 rolls (6 and
8 rolls in the entire setup), see also the schematics on the right of fig. 4.5. At
the boundary of the last (top) roll and the penultimate roll high velocity fluid
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from the inner cylinder is advected towards the middle, increasing the velocity
at the center of the gap. Similarly, at the boundary of the penultimate and the
antepenultimate roll the low velocity fluid from the outer cylinder is advected
inwards, decreasing the velocity at the center of the gap. The corresponding
average aspect ratio of the vortices is 1.96 (3 rolls) and 1.46 (4 rolls), which is
consistent with previous studies (see e.g. fig. 2.5 in ref. [92]). Close inspection
of fig. 4.3¢ and fig. 4.5a shows that the roll around z/L = 0.5 slightly drifts
upwards for 0.3 < a < 0.45 (compared to a < 0.3), which could be a signature
of symmetry breaking; the top half of the system behaves slightly differently
from the bottom half. This is an explanation of the anomaly in the local
angular velocity for trajectory V around a =~ 0.28. Such symmetry-breaking
behavior has also been found in von Karmén flow [93]. Note that the middle
section of the inner cylinder with height z/L = 0.578 does not cover all the
rolls, therefore the exact mean torque value over the entire inner cylinder
could be different. It is, however, unlikely that this difference takes away the
‘jumping’ behavior.
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Figure 4.3: (a) Compensated Nu, as a function of a. Experiments following
trajectories I and V are colored in blue and red, respectively. Experiments
following trajectory I either go into a high or a low state for 0.17 < a < 0.51,
while experiments of trajectory V are always in the high state. (b) Azimuthal
velocity measured at r = (r; + 7,)/2 and z/L = 0.5 as a function of a for
trajectories I and V. Same colors as in fig. (a). For the local velocity we also
see that the system bifurcates when following trajectory I around a = 0.51,
choosing the high or low state for 0.17 < a < 0.51. (c) and (d) show axial scans
of the standardized ug for varying a following trajectories V and I, respectively.
4 rolls are present in the top half of the system in fig. (c), while in fig. (d) only
3 rolls are present for 0.17 < a < 0.51. For a < 0.17 and a > 0.51 the system is
in the same state, regardless of the trajectory. ug = (ug—(ug),)/0a(ug), where
0, is the standard deviation of u, for each a, and (), stands for averaging over
z. The torque of trajectory V is 2.5% larger than for trajectory I at a = 0.36.
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Figure 4.4: Close up view of figure 4.3a. The trajectories I (a |) that are in the
low state sharply transition to the high state around a = 0.17. Trajectories I
start to transition around a = 0.51, though the process seems more gradual,
and sometimes stay in the high state. Trajectories V (a 1) never transition
and are always in the high state. The error bar, shown in the top-left of the
figure, is based on the accuracy of the torque sensor in the system.
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From our findings of trajectory I and V (constant Ta) we find that the max-
imum torque is at a = 0.36 (f; = 5.882 Hz, f, = —2.118 Hz). We now look
at other trajectories reaching this maximum but keeping either f,, a, or f;
constant, see trajectories II-IV in fig. 4.2. For constant f, and constant a
(trajectories IT and III) the system was found to have the ability to go in ei-
ther the high or the low state as well, see the legend of fig. 4.2. Like trajectory
V, trajectory IV (constant f;) was found to be characterised by a high state of
the system. It seems that if a = 0.36 is approached from below (trajectories
IV and V) the flow does not bifurcate. However, the system does bifurcate
when a = 0.36 is approached from the top, or if a is kept constant but the
driving strength is increased.

4.3 Discussion

We have shown that Taylor-Couette flow displays flow structure even for a
very high Taylor number of roughly 10?2 (Re = O(10°)), which is beyond
Reynolds numbers for which large-scale structures were believed to vanish in
Kolmogorov’s picture. In addition, we found that the system is hysteretic and
can be in multiple stable turbulent states for the same driving parameters.
The multiple states are simultaneously measured globally and locally by per-
forming torque and LDA measurements. It was found that multiple states can
occur for rotation ratios 0.17 < a < 0.51. For 0 < a < 0.17 there is only a
single stable state, though we cannot exclude that other trajectories in phase
space might trigger multiple states in this region. For a > 0.51 the system
does not possess a state with a clear roll structure. Presently, a theoretical
understanding of the values ¢ = 0.17, @ = 0.51 and the sharp and smooth
behaviour of the jumps around those a is lacking. Finally we note that the
presented experiments, performed in the T3C facility, will be challenging to
simulate in DNS in the foreseen future: simulations of such high Ta are diffi-
cult, especially for I' = O(10). The present work highlights the importance of
the coherent structures and their selectability in highly turbulent flows, which
demand continued effort and investigation. The question of whether or not
these structures survive for even larger Reynolds numbers, remains open but
is important for understanding the myriad of large-scale flows in nature.
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Statistics of turbulent fluctuations in
counter-rotating Taylor-Couette flows®

The statistics of velocity fluctuations of turbulent Taylor-Couette flow are exam-
ined. The rotation rate of the inner and outer cylinder are varied while keeping
the Taylor number fixed to 1.49 - 102 [O(Re) = 10°]. The azimuthal velocity
component of the flow is measured using laser Doppler anemometry. For each ex-
periment 5 - 10% datapoints are acquired and carefully analyzed. Using extended
self-similarity [Benzi et al., Phys. Rev. E 48, R29 (1993)] the longitudinal struc-
ture function exponents are extracted, and are found to weakly depend on the
ratio of the rotation rates. For the case where only the inner cylinder rotates the
results are in good agreement with results measured by Lewis and Swinney [Phys.
Rev. E 59, 5457, 1999] using hot-film anemometry. The power spectra show clear
—5/3 scaling for the intermediate angular velocity ratios —w,/w; € {0.6,0.8,1.0},
roughly —5/3 scaling for —w,/w; € {0.2,0.3,0.4,2.0}, and no clear scaling law
can be found for —wp/w; = 0 (inner cylinder rotation only); the local scaling
exponent of the spectra has a strong frequency dependence. We relate these ob-
servations to the shape of the probability density function of the azimuthal velocity
and the presence of a neutral line.

°Published as: Sander G. Huisman, Chao Sun, and Detlef Lohse, Statistics of turbulent
fluctuations in counter-rotating Taylor-Couette flows, Phys. Rev. E 88, 063001 (2013). Exper-
iments, analysis, plotting, and writing of the manuscript done by Huisman. Supervision by Sun
and Lohse, proofread by everyone.
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5.1 Introduction

Taylor-Couette (TC) flow, among others like Rayleigh-Bénard convection, and
von Kérman, pipe, channel and plate flow, played a pivotal role in exploring
fundamental concepts in fluid mechanics [94]. In a TC apparatus, fluid is con-
fined between two independently rotating coaxial cylinders; see Fig. 3.1. The
TC geometry is best described with cylindrical coordinates: radial distance p,
azimuth 6, and height z. The driving of the TC apparatus is given by two
Reynolds numbers:
Reiy Wi oPio(Po — Pi),

v

where w is the angular velocity defined as ug/p, p the radius, v the kinematic
viscosity, and the ¢ and o subscripts denote quantities related to the inner
and outer cylinder, respectively. Another way of describing the flow is by a
Taylor number Ta = 10 (po — pi)%(po + pi)*(wi — wo)?/v?, which is the ratio
of centrifugal forces to viscous forces, along with a parameter describing the
ratio of the driving velocities, for which we have chosen:

Wo
a=——. 5.1
- (5.1
o is defined as [(1 4+ 7)/+/4n]* with the radius ratio n = p;/p,. By measuring
the torque 7 [10, 16, 95, 26, 27, 64, 69, 56], required to maintain constant
angular velocity of both cylinders, we can find the power input (P) of our
system using P = T |w; — w,|. Note that we can measure the torque on either
cylinder as it has the same magnitude on the inner and the outer cylinders [1].
As all the energy that enters the system globally will be dissipated by viscous
dissipation, the torque can be related to the average energy dissipation rate:
(power input) T |wi — wol

= = 5.2
‘ (mass) paviam(p3 — p7)L (5:2)

where pgyiq is the density of the working fluid and L the length of the cylinders.
Using the energy dissipation rate and the viscosity we can now find the average
Kolmogorov length scale [78, 79] in our flow: ng = (v*/e) 4

Using hot-film anemometry, Lewis and Swinney [10, 34] measured the statis-
tics of velocity fluctuations for the case of inner cylinder rotation for Re up

to 5.4 - 10°. They found that the energy spectrum does not show power
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Figure 5.1: Sketch of the vertical cross section of the Twente Turbulent Taylor-
Couette facility (T3C) [21]. The beams of the laser Doppler anemometer
(LDA) are in the horizontal plane at middle height, z = L/2. Top right inset:
Horizontal cross section showing the beams of the LDA. The beams refract
twice on the outer cylinder and intersect at the middle of the gap. The angle
between the beams is exaggerated to highlight the refraction on the inner and
outer surface of the outer cylinder.

law scaling, and that the structure function exponents—calculated using ex-
tended self-similarity [96]—are close to those found in other flows [10]. In
this chapter we quantify the turbulent statistics of Taylor-Couette flow with
various rotation ratios [Eq. (5.1)] for fixed Taylor number of Ta = 1.49 - 10'2
[O(Re) = 10°%]. We used the Twente Turbulent Taylor-Couette facility (T>C)
[21], which was filled with water and actively cooled to keep the temperature
constant. The T3C has an inner cylinder with an outer radius of p; = 200 mm
and a transparent outer cylinder with inner radius p, = 279 mm, giving a ra-
dius ratio of n = 0.716. The cylinders have a height of L. = 927 mm, resulting
in an aspect ratio of I' = L/(p,—pi) = 11.7. We measured the azimuthal veloc-
ity using laser Doppler anemometry (LDA). The advantage of this technique
is that it allows for a nonintrusive measurement of a velocity component. For
the case of counterrotation the mean flow direction is not always in a single
direction, and using, e.g. a hot-film probe or a pitot tube to measure the local
velocity would result in measuring the speed in the wake of the probe. The
laser beams go through the outer cylinder and are focused in the middle of the
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gap (2p = p; + po) at midheight (z = L/2), and lie in the #—r plane; see also
Fig. 5.1. The water is seeded with tracer particles [70] with a mean radius of
2.5 um and density of 1.03 g/cm?. This radius is roughly six times smaller than
our Kolmogorov length scale. We equate the drag force Fyrag = 6T purscca Aty
and the centrifugal force Feent = (pseed — pfiuid) (4772 /3)u3/p of the seeding
particles, and compute Auy = |uggseed — Uo Auid| to make sure the particles
faithfully follow the flow. For our measurements we find that Aug ~ 40 um/s,
which is much smaller than the driving velocities O(w;p; — wopo) = 10 m/s,
so we are sure that the particles follow the flow. In addition one could cal-
culate the Stokes number; we find that St = 7,/7, = 0.006 < 1 in the worst
case (@ = 0.3). Due to the curvature of the outer cylinder we have to cor-
rect the measured velocity by multiplying it with a constant factor. We find
this constant numerically by ray-tracing [91] the LDA beams in our optical
geometry.

a 5t 5o Re (ug), o € Rey, 43
/s 1/s 10° m/s m/s m?/s3
0.0 9.99 0.00 1.38 5.08 0.31 12.9 106  3.37
0.2 832 -166 1.32 242 0.38 15.3 144 3.00
0.3 7.67 -230 129 1.62 0.32 16.3 97  3.96
04 713 -285 1.27 148 0.35 15.8 120 2.77
0.6 6.24 -3.74 124 0.36 047 13.2 240 3.02
0.8 554 -444 1.21 -0.43 0.49 11.0 278  2.89
1.0 499 -5.00 1.19 -0.83 0.43 9.2 235 3.27
20 332 -6.66 1.12 -3.10 0.32 5.1 173 3.23

Table 5.1: Experimental parameters for the various rotation ratios. For each
experiment the Taylor number is fixed to 1.49 - 102 and the number of data
points is fixed to 5 - 10%. w; and w, are measured using high precision magnetic
encoders. All the measurements are done at midheight and in the middle of the
gap. ( - )¢ denotes averaging over time. The Taylor-Reynolds number is found

by combining local velocity and global torque measurements: Rey = 4/ 1‘254,

where € comes from the global torque, see Eq. (5.2). The standard deviation
of ug is given by o and the kurtosis by 7.
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5.2 Experiments and Results

In our experiments we fixed Aw = w; — w, (see Table 5.1); the consequence
of this is that our Taylor number is fixed, while our Reynolds number varies
slightly. For each experiments we acquire 5 - 105 data points. Because the
arrival times of LDA measurements are of stochastic nature the time series are
then linearly interpolated using twice the average acquisition frequency (2f,),
such as to create a time series with equal temporal spacing. We chose double
the frequency to also capture fast fluctuations which are otherwise lost. It can
happen that for a relatively long time there is no measurement, while for other
moments a burst of measurements is taken. We take care to disable parts of
the interpolated time series for which the temporal gap in the original data is
too big (3/f is chosen; although the effect is hardly noticeable we wanted to
account for the time that the LDA beams are blocked by vertical supporting
rods), and for which interpolation is not justified. These disabled data points
are not used in any of the calculations, except for the spectra.

We will first look at the probability density function (PDF) of the velocimetry
data; see Fig. 5.2. For the cases a = 0.6, a = 0.8, and a = 1, we see that the
PDF F seems to be comprised of two parts, as it has two bumps; one bump for
ug > 0 and one for ug < 0. It seems that the presence of a neutral line (ug = 0)
alters the flow dynamics, as was also found in Ref. [41]. The outer region is
stabilized by the outer cylinder, while the inner region is destabilized by the
inner cylinder. Somewhere in between there must therefore be an interface
where up = 0. For a € {0.6,0.8,1.0} our measurement position is on the
border of this interface [41]. Also indicated in Fig. 5.2 and in Table 5.1 is the
mean velocity. As expected, the mean velocity decreases monotonically with
increasing a, while the standard deviation is quite similar throughout, but
slightly higher for the cases where the PDF is comprised of two contributions
[41].

In order to compare the shapes of the PDFs we standardize the velocities
(transforming the data set such that it has zero mean and unit variance):

pn = ((uo = (ug),)"),
o=/l (5.3)
g = (ug — <u9>t>t /o
where (.); denotes averaging over time. In Fig. 5.3 we plot the PDFs of the
standardized velocities. We now see that the tails of most of the distributions
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Figure 5.2: Probability density functions of the azimuthal velocity [F(ug)]
measured at midheight for varying a = —w,/w;. The means of the velocities
are indicated by grid lines with their respective color. a increases from right
to left.

behave much like Gaussians. This is also reflected in the value for the kurtosis
(pa/o?), see Table 5.1. The values that we find are close to 3 (except for
the case a = 0.3) and the distributions are only slightly leptokurtic (> 3) or
platykurtic (< 3.

Table 5.1 also includes the Taylor-Reynolds number Rey. We find that the
Taylor-Reynolds number is not necessarily the largest for the case when the
torque is the highest (a =~ 0.33), as a higher torque means a higher o [Eq.
(5.3)], but also a higher e [Eq. (5.2)]. Furthermore, we note that ¢ depends
on the radial and axial position and that therefore the Taylor-Reynolds number
is a function of position.

Although the PDF of the velocity is of importance in describing a turbulent
flow, it obviously does not describe the dynamics of the flow. We therefore
look at velocity increments A, ug:

Apug = ug(x + 1) — ug(x). (5.4)

Here r is the distance between the two measurement positions x and = + 7.
As we probe the velocity at only one position, we have to invoke Taylor’s
frozen flow hypothesis [97] to obtain the velocity increments: ug(x + r,t) =
ug(x,t — r/U) where U is a typical velocity scale. Here we chose the rms
velocity of ug, as it best describes the displacement of a fluid parcel for the
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Figure 5.3: Probability density function of the standardized azimuthal velocity
[F (1g)] for various a. Colors are the same as in Fig. 5.2. The dashed line is a
Gaussian with zero mean and unit variance.

cases where the velocity is in both directions (a = 0.6, a = 0.8, and a = 1.0).
For the cases where the velocity is mainly in one direction the rms velocity is
very close to the absolute of the mean velocity. We plot the PDF of A,uy [Eq.
(5.4)] for several different r for the cases of a = 0 and a = 1, see Fig. 5.4.
For both a we can clearly see that for small r/ng the distributions are very
leptokurtic (the kurtosis 4 /0* = 3.3 - 103 for r/ng = 36, a = 0, and py/0* =
2.4 - 10 for r/nx = 37, a = 1). Here nk is calculated based on globally
measured torque values at the corresponding a. At a = 0 the PDF does not
recover to a Gaussian [Fig. 5.4(a)| for very large r, whereas it does become
normally distributed for other a; see, e.g. Fig. 5.4(b) for a = 1. We speculate
that, for large r and due to the periodic nature of our geometry and the
coherent structures in our flow (Taylor vortices), the flow can stay correlated
for an unusually long time for certain a and for certain positions in the flow.
We will systematically characterize the r dependence of different moments
using longitudinal structure functions: Dy(r) = ((Ayugp)?). For odd moments
p, Dp(r) is converging very slowly; we therefore use the absolute [98, 99] values
of the velocity increments:

Dy = (| u) (55)

for all p. Note that there is no theoretical justification that D} (r) and Dp(r)
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scale in the same way, although the scaling of D, (for odd p) has been found to
be similar to that of D), but not essentially the same; see, e.g. [100, 101]. Figure
5.5(f) shows the structure functions for p € [1,6] for the case of a = 0. We
carefully examine the convergence when computing the structure functions.
While Dy, can be calculated using Eq. (5.5), we can alternatively express it as
an integral:

D; = / PDF (A,ug)|AruglPd(Arug). (5.6)

We now take a careful look at the integrand of Eq. (5.6) and plot this inte-
grand for points @-@© in Fig. 5.5(f), corresponding to figures 5.5(a)-5.5(e),
respectively. For increasing p the structure functions measure the influence
of increasingly rare events. We see in Figs. 5.5(a) and 5.5(b) that the tails of
the integrands at points @ and () are not fully converged, and we therefore
have to omit these points from the structure functions. We do this analysis
for all p and for all r for each case of a and omit data from the analysis; these
omitted data are plotted gray in fig. 5.5f. For high p and low r we find that
we do not have sufficient statistics to capture all the rare events necessary to
faithfully calculate Dj.

For fully developed turbulent flows the structure functions are suggested to
scale as power laws in the inertial subrange [97]:

D,(r) rr

Kolmogorov predicted [78, 79, 97] these exponents to scale as (, = p/3; any
deviation from this model is the result of the intermittency of the flow. For
our case we will denote the scaling exponents as (;, as we are using D (r) in
the analysis rather than Dp(r). We expect an inertial subrange for roughly
10n < r < Ly;—where Lj; is the integral length scale—because these length
scales are separated by roughly two decades for our flow. But, as seen in
Fig. 5.5(f), we do not see an inertial subrange where the structure functions
show power-law scaling, a finding also observed in Ref. [10]. We therefore
are unable to extract structure function exponents directly from our structure
functions; this results holds for all our a. As suggested by Benzi et al. [96],
we can extend the range over which scaling holds by employing extended self-
similarity (ESS). The pth-order structure function is plotted as a function
of the third-order structure function; the scaling exponent is now given by
(¢;/C5- From the Navier-Stokes equations one can derive the Kolmogorov—
Howard—von Karmén (KHvK) relation, from which we can determine that
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for r > 134 V4 Dy —%er, or (3 = 1. In this work we will assume
that (3 = ¢§ = 1, and we would like to note that the KHvK relation is
derived under the assumption of isotropic homogeneous turbulence, which is
questionable in our flow arrangement. Nevertheless, we employ ESS analysis
for our longitudinal structure functions; see Figs. 5.6(a) (a = 0) and 5.7(a)
(a=1).

We now clearly see that in the ESS representation the scaling is much better,
and that we are able to extract structure function exponents from our data. In
addition, we also compensate our data with Kolmogorov’s prediction (p/3); see
Figs. 5.6(b) and 5.7(b). Note that in these compensated plots [98, 99] (plotted
in double-logarithmic scales) any deviation from a perfect power scaling is
amplified and clearly visible. Furthermore, we expect a straight line in the
case of perfect scaling. We perform power-law fits to our ESS data for all a,
and extract (;; see Table 5.2 and Fig. 5.8.

a 0 O,s 02 03 04 06 038 1 2
p

1 0.37 037 037 037 039 037 037 037 0.37
2 0.70 0.70 071 0.71 0.72 0.70 0.71 0.70 0.70
3* 1 1 1 1 1 1 1 1 1

1.27 127 1.27v 126 125 1.26 126 1.27 1.28
1.51 150 1.51 150 1.49 1.53 151 1.53 1.53
171 172 173 171 170 1.69 1.71 1.78 1.77

O Ut

Table 5.2: Structure function exponents ¢, for different a. Ops are the data
from Lewis and Swinney [10], for which a = 0 and Re = 5.4 - 10°. Because of
the usage of ESS by definition (3 = 1.

Lewis and Swinney [10] have performed a similar analysis on Taylor-Couette
flow for pure inner cylinder rotation, and we have included their structure
function exponents (obtained using ESS, Re = 5.4 - 10°) also in the afore-
mentioned table. We see that for 1 < p < 5 the structure function exponents
are similar, independent of the Reynolds number, and almost independent of
the amount of counter rotation applied to the system. It is only for p = 6 that
the differences between the exponents become noticeable; 1.69 for a = 0.6
and 1.78 for a = 0. This difference might be caused by not including the
high-p and low-r data in our fits due to lack of statistics. We notice that
for increased counter-rotation (i.e. increased a) we do not see a systematic
trend for the structure function exponents. From global torque measurements
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[26, 27, 41, 102] we know that there is a maximum in the torque needed to sus-
tain a constant angular velocity for both cylinders. This peak in the torque has
been found around a = 0.33. This peak in the torque has as a consequence
that the Kolmogorov length scale is smallest for the rotation ratio a = 0.3
(nxg = 15.7 um) and largest for a = 2.0 (nx = 21.0 pm)—assuming homoge-
neous turbulence for both cases. We, however, do not see any similar trend in
the structure function exponents. It seems that all the exponents are nearly
universal; independent of the Reynolds number (Lewis and Swinney [10] also
performed their experiments for Re = 6.9 - 10* and found similar structure
function exponents as for our Re = 1.38 - 10°) and independent of the amount
of counter-rotation applied to the system. Our structure functions are tabu-
lated in Table 5.2 and plotted in Fig. 5.8, for comparison we have included
the data from Lewis and Swinney [10] and the She-Lévéque model with its
standard parameters [103]. We find that, for nearly all the exponents and for
nearly all the a cases, Taylor-Couette flow seems more intermittent than the
She-Lévéque model predicts, as already reported in Ref. [10].

In Fig. 5.9(a) we plot the spectra for all cases. We see that most of the energy
is kept in the low frequencies [93], even lower than the driving frequency:
Wi — W = 2m x 105! for the cases a € {0.6,0.8,1.0}. Furthermore, we see
for @ = 0 that we do not have any power-law scaling behavior, as was already
found in the TC experiments of Ref. [10]. However, for a € {0.6,0.8,1.0}—the
same as for which the PDF of the azimuthal velocity showed that it was made
up of two distributions—we see a power law scaling with exponent —5/3.
To reveal the quality of the scaling we compensate the data by w®/3, see
Fig. 5.9(b). We indeed see in Fig. 5.9(b) that the power spectra for a €
{0.6,0.8,1.0} level out over roughly two decades. Furthermore, for the case
a = 0 we see that there is no scaling whatsoever. In addition, we also plot
the local exponent of the spectrum. Here we also see that the power-law
scaling for a € {0.6,0.8,1.0} is around —5/3 close to w = 103 s™!, and that
for a = 0 the exponent is constantly changing. The curving up of our spectra
at the high-frequency end is due to our limited measuring frequency. We
therefore do not recover the steep slopes (> 2) found by Lewis and Swinney
[10]. However, they also found that for a = 0 the local slope is never constant
and is a monotonic function of w.

In this work we relied on Taylor’s hypothesis, which certainly has to be ex-
perimentally justified in the future using a field measurement technique, e.g.
particle imaging velocimetry. In addition we assumed concepts of homoge-
neous isotropic turbulence to obtain € and therefore 1. Future work will be
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necessary to study the anisotropic properties of the flow [104, 105].
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Figure 5.4: (a) Probability density functions of velocity increments [F (A, ug)]
for varying r for the case of a = 0. Values of r are shown as multiples of the
Kolmogorov length scale, and are colored accordingly. (b) As in (a) but for
a =1. (a),(b) The black line is a Gaussian with zero mean and unit variance.
Arrows indicate increasing r/nx.
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Longitudinal structure functions [Dj(r)] for varying powers p (indicated on
the right) for the case of @ = 0. Structure functions are scaled using a constant

(f)

by = D3(rmin). The separation distance r is normalized using the Kolmogorov
length scale nx and the integral length scale Li;. For various p and r (thick

points labeled @—(©) the integrand of Eq. (5.6) is plotted. Data in gray color

are not fully converged, and are omitted in the ESS calculation.
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5.3 Summary

To summarize, we have measured the local azimuthal velocity in a turbu-
lent Taylor-Couette flow with various amounts of counterrotation using laser
Doppler anemometry. We found that the structure functions show no inertial
subrange for all p and for all cases a. Using extended self-similarity analysis
[96], we extracted the structure function exponents, which are in good agree-
ment with earlier results by Lewis and Swinney [10]. We find that for a = 0
the structure function exponents are nearly independent of the Reynolds num-
ber: previous results [10] are for Re = 6.9 - 10* and Re = 5.4 - 10°, while our
current results are for Re = 1.38 - 105. Any discrepancy between these ex-
ponents could easily be caused by different fitting intervals and are certainly
within experimental error. Furthermore, we find that adding rotation of the
outer cylinder of the system to create counterrotation does not strongly influ-
ence the structure function exponents, but does strongly change the scaling of
the spectra. While for a € {0.6,0.8,1.0} we see a clear power-law scaling in
the spectra, we do not observe such clear scaling in the second-order structure
function.



Optimal Taylor-Couette turbulence®

Strongly turbulent Taylor-Couette flow with independently rotating inner and outer
cylinder with a radius ratio of n = 0.716 is experimentally studied. From global
torque measurements, we analyze the dimensionless angular velocity flux Nu,, as
a function of the Taylor number Ta and the angular velocity ratio a = —w,/w; in
the large Taylor number regime O(Ta) = 10'1-10'3. We analyse the data with
the common power law ansatz for the dimensionless angular velocity transport
flux Nuy,(Ta,a) = f(a) - Ta”. The data is consistent with one effective exponent
v = 0.39 + 0.03 for all a, but we discuss a possible a-dependence in the co-
and weakly counter-rotating regimes. The amplitude of the angular velocity flux
f(a) = Nu,,(Ta,a)/Ta%3? is measured to be maximal at slight counter-rotation,
namely at an angular velocity ratio of agpr = 0.33£0.04. This value is theoretically
interpreted as the result of a competition between the destabilizing inner cylinder
rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation.
With the help of laser Doppler anemometry, we provide angular velocity profiles
and, in particular, identify the radial position r,, of the neutral line, defined by
(w(rp))e = 0 for fixed height z. Furthermore, we characterise the flow by the
position of zero velocity for the various flow regimes (co- and counter-rotation)
and observe that the probability density functions of the flow velocity is either

°Published as: Dennis P.M. van Gils, Sander G. Huisman, Siegfried Grossman, Chao Sun, and
Detlef Lohse, Optimal Taylor-Couette turbulence, J. Fluid Mech. 706, 118 (2012). Experiments,
analysis, and writing are done by van Gils, and Huisman contributed to setting up the LDA and
signal analysis. Supervision by Sun and Lohse. Discussions of the results and proofreading of the
manuscript by everyone.
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6.1 Introduction

Taylor-Couette (TC) flow (the flow between two coaxial, independently ro-
tating cylinders) is next to Rayleigh-Bénard (RB) flow (the flow in a box
heated from below and cooled from above) the most prominent ‘Drosophila’
on which to test hydrodynamic concepts for flows in closed containers. For
outer cylinder rotation and fixed inner cylinder, the flow is linearly stable.
In contrast, for inner cylinder rotation and fixed outer cylinder the flow
is linearly unstable thanks to the driving centrifugal forces, see e.g. Refs.
[94, 106, 19, 107, 31, 32, 108, 109, 110, 17]. The case of two independently
rotating cylinders has been well analyzed for low Reynolds numbers, see e.g.
Ref. [18]. For large Reynolds numbers, where the bulk flow is turbulent, stud-
ies have been scarce—see for example the historical work by Wendt [14] or
the experiments by Refs. [18, 111, 16, 112, 15, 54]. Refs. [95, 113] examined
the local angular velocity flux with LDA in independently rotating cylinders
at high Reynolds numbers up to 2 - 105. Recently, in two independent exper-
iments, Refs. [26, 27] supplied precise data for the global torque scaling in the
turbulent regime of the flow between independently rotating cylinders.

We use cylindrical coordinates 7, ¢, and z. Next to the geometric ratio n =
r;/To between the inner cylinder radius r; and the outer cylinder radius r,, and
the aspect ratio I' = L/d of the cell height L and the gap width d = r, — r;,
the dimensionless control parameters of the system can either be expressed in
terms of the inner and outer cylinder Reynolds numbers Re; = rjw;d/v and
Re, = rowed/v, respectively, or in terms of the ratio of the angular velocities

a=—w,/wj (6.1)

and the Taylor number

1 -
Ta = ZU(TO —73)2 (1 4 7o) 2 (Wi — wo) v 2. (6.2)
Here, according to the theory by Ref. [1] (from now on called EGL), 0 =
(1 +n)/(2ym)* (thus o = 1.057 for the current n = 0.716 of the used TC
facility) can be formally interpreted as a ‘geometrical’ Prandtl number and v is
the kinematic viscosity of the fluid. With rq = (1, +7,)/2 and r, = \/r;T, the
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arithmetic and the geometric mean radii, the Taylor number can be written
as

Ta = rgr;4d2(wi — w2 (6.3)

The angular velocity of the inner cylinder w; is always defined as positive,
whereas the angular velocity of the outer cylinder w, can be either positive (co-
rotation) or negative (counter-rotation). Positive a thus refers to the counter-
rotating case on which our main focus will lie.

The response of the system is the degree of turbulence of the flow between
the cylinders (e.g. expressed in a wind Reynolds number of the flow, measur-
ing the amplitude of the r and z components of the velocity field) and the
torque 7, which is necessary to keep the inner cylinder rotating at constant
angular velocity. Following the suggestion of EGL, the torque can be non-
dimensionalized in terms of the laminar torque to define the (dimensionless)
‘Nusselt number’

-
Nuy=———7"—, 6.4
. 2WLpﬂuidJﬁm ( )

where pguiq is the density of the fluid between the cylinders and
i = 22— (6.5)

2 _ 2
rs r;

is the conserved angular velocity flux in the laminar case. The reason for the
choice (6.4) is that

T2 = TNt = 1% () g = V0 () 4, (6.6)

is the relevant conserved transport quantity, representing the flux of angular
velocity from the inner to the outer cylinder. This definition of J* is an imme-
diate consequence of the Navier-Stokes equations®. Here u, (uy) is the radial
(azimuthal) velocity, w = ue/r the angular velocity, and (...) 4 , characterizes
averaging over time and a cylindrical surface with constant radius r. With
this choice of control and response parameters, EGL could work out a close
analogy between turbulent TC and turbulent RB flow, building on Ref. [45]
and extending the earlier work of Refs. [4, 5]. This was further elaborated by
Ref. [26].

©The authors would like to point out that Eq. 6.6 appeared first, in a different notation,
in Ref. [114], where J“ was called the ‘torque’. Eq. 3.4 and Eq. 4.13 of Ref. [1] are analogous
to Eq. 3.2 and Eq. 3.4 of Ref. [114].
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The main findings of Ref. [26], who operated the TC set-up, known as the
Twente turbulent Taylor-Couette system or T3C, at fixed n = 0.716 and
for Ta > 10' as well as the variable a well off the stability borders —n?
and oo, are as follows: (i) in the (Ta,a) representation, Nu,(Ta,a) within
the experimental precision factorizes into Nuy,(Ta,a) = f(a) - F(Ta). (i)
F(Ta) = Ta%3® for all analyzed —0.4 < a < 2.0 in the turbulent regime. (iii)
f(a) = Nuy,(Ta, a)/Ta’3® has a pronounced maximum around aqp; = 0.4. Also
Ref. [27], at slightly different n = 0.725 found such a maximum in f(a), namely
at aept ~ 0.35. For this agpy the angular velocity transfer amplitude f(aopt(7))
for the transport from the inner to the outer cylinder is maximal. From
these findings one has to conclude that for not too strong counter-rotation
0 < a < 0.4 the angular velocity transport flux is still further enhanced as
compared to the case of fixed outer cylinder a = 0. This stronger turbulence
is attributed to the enhanced shear between the counter-rotating cylinders.
Only for strong enough counter-rotation (a > aopt) the stabilization through
the counterrotating outer cylinder takes over and the transport amplitude
decreases with further increasing a.

The aims of this chapter are to provide further and more precise data on the
maximum in the conserved turbulent angular velocity flux Nu,(Ta,a)/Ta” =
f(a) as a function of a and a theoretical interpretation of this maximum,
including a speculation on how it depends on 1. We also put our findings in the
perspective of the earlier results on highly turbulent TC flow by Refs. [9, 8, 10]
and on recent results on highly turbulent Rayleigh-Bénard flow [47]. We think
that all these experiments achieve the so-called ‘ultimate regime’ in which
the boundary layers are already turbulent. Next we provide laser Doppler
anemometry (LDA) measurements of the angular velocity profiles (w(r)); as
functions of height, and show that the flow close to the maximum in f(a),
for these asymptotic Ta and deep in the instability range at a = agpt, has a
vanishing angular velocity gradient Ow/0r in the bulk of the flow. We identify
the location of the neutral line r,, defined by (w(r,))s = 0 for fixed height z,
finding that it remains still close to the outer cylinder r, for weak counter-
rotation, 0 < a < aopy, but starts moving towards the inner cylinder r; for
a > aopt. Finally we show that the turbulent flow organization totally changes
for a > aopt, where the stabilizing effect of the strong counter rotation reduces
the angular velocity transport. In this strongly counter-rotating regime the
probability distribution function of the angular velocity in the bulk becomes
bi-modal, reflecting intermittent bursts of turbulent structures beyond the
neutral line towards the outer flow region, which otherwise, i.e. in between
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mid

Figure 6.1: Sketch of the T3C cell employed for the measurements presented
here [21]. The total height of the cell is L = 92.7 cm. The torque measurements
are made with the middle part of the cell with length L,;q = 53.6 ¢cm only,
in order to minimize edge effects. The outer and inner cylinder radii are
ro = 27.94 cm and r; = 20.00 cm, leading to a radius ratio of n = 0.716, a gap
width of d = r, — r; = 7.94 cm, a total aspect ratio of I' = L/d = 11.68, and
an internal fluid volume of 111 liters. The inner and outer cylinder angular
velocities are denoted by w; and w,, respectively. w; > 0 by definition, implying
that w, < 0 or a = —w,/w; > 0 represents counter-rotation, on which we focus
in this chapter. The top and bottom plates are attached to the outer cylinder.

such bursts, is stabilized by the counter-rotating outer cylinder.

The outline of this chapter is as follows. The experimental setup is introduced
in section 6.2 and we discuss, additionally, the height dependence of the flow
profile and finite size effects. The global torque results are reported and dis-
cussed in section 6.3. Section 6.4 and 6.5 provide laser Doppler anemometry
(LDA) measurements on the angular velocity radial profiles and on the tur-
bulent flow structures inside the TC gap. This chapter ends, in section 6.6,
with a summary and further discussions of the neutral line inside the flow.
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6.2 Experimental setup and discussion of end-effects

The core of our experimental setup, the Taylor-Couette cell, is shown in Fig.
6.1. In the caption of that figure we give the respective length scales and their
ratios. The details of the setup are given in Ref. citegillltttc. The working
liquid is water at a continuously controlled constant temperature (precision
+0.5 K) in the range 19 °C-26 °C. The accuracy in setting and maintaining a
constant a is +0.001 based on the angular velocity stability of the T3C facility.
To reduce edge effects, similarly as in Refs. [9, 8] the torque is measured at
the middle part (length ratio Ly,q/L = 0.578) of the inner cylinder only.
The original motivation of Ref. [9] for this choice was that the height of the
remaining upper and lower parts of the cylinder roughly equals the size of a pair
of Taylor-vortices. While the respective first or last Taylor vortex indeed will
be affected by the upper and lower plates (which in our T2C cell are attached
to the outer cylinder), the hope is that in the strongly turbulent regime the
turbulent bulk is not affected by such edge effects. Note that for the laminar
case (e.g. for pure outer cylinder rotation) this clearly is not the case, as has
been known since 1923 [94], see e.g. the classical experiments by Ref. [115],
the numerical work by Ref. [116], or the review by Ref. [117]. For such weakly
rotating systems, profile distortions from the plates propagate into the fluid
and dominate the whole laminar velocity field. The velocity profile will then
be very different from the classical height-independent laminar profile (see e.g.
Ref. [118]) with periodic boundary conditions in vertical direction,

Ugp lam = Ar + B/r (6.7)
2
Wo — 1" Wj
A= oMW .
v (6.8)
(w; — wo)r?
B=—-—+1% 6.9
= (6:9)

To control edge effects and ensure that they are indeed negligible in the
strongly turbulent case under consideration here (10! < Ta < 10 and
—0.40 < a < 2.0, so well off the instability borders), we have measured
time series of the angular velocity w(r,t) = wug(r,t)/r for various heights
0.32 < z/L < 1 and radial positions r; < r < r, with laser Doppler anemom-
etry (LDA). We employ a backscatter LDA configuration set-up with a mea-
surement volume of 0.07 mm X 0.07 mm X 0.3 mm. The seeding particles
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(PSP-5 Dantec Dynamics) have a mean radius of rgeq = 2.5 pm and a den-
sity of psed = 1.03 g/cm®. We estimate the minimum velocity difference
AV = Ugeed — Vuid Petween a particle vgeeq and its surrounding fluid vgyig
needed for the drag force

Farag = 6T prseca Av (6.10)
to outweigh the centrifugal force

Feent (T) = 47'[-7“seed3 (pseed - pﬂuid) U2/(3T‘). (611)

We put in v = 5 m/s as a typical azimuthal velocity inside the TC-gap at mid-
gap radial position 7 = 0.24 m, with pguq = 1.00 g/cm? as the density and y =
9.8 x 107* Ns/m? as the dynamic viscosity of water at 21 °C. This results in
AV = 27geed? (Psced — Poiuid) V2/(9ur) =~ 4 x 107% m/s, which is several orders
of magnitude smaller than the typical velocity fluctuation inside the TC-gap
of order 107! m/s and hence centrifugal forces on the seeding particles are
negligible.

We account for the refraction due to the cylindrical interfaces, details are
given by [91]. Figure 6.2a shows the height dependence of the time-averaged
angular velocity at mid-gap, 7 = (r — r;)/(ro — 1) = 1/2, for a = 0 and
Ta = 1.5 x 10'2, corresponding to Re; = 10% and Re, = 0. The dashed-dotted
line at z/L = 0.79 corresponds to the transition from the middle-part of the
inner cylinder, with which we measure the torque, and the upper part. Along
the middle-part the time-averaged angular velocity is z-independent within
1%, as is demonstrated in the inset, showing the enlarged relevant section
of the w axis. From the upper edge of the middle-part of the inner cylinder
towards the highest position that we can resolve, 0.5 mm below the top plate,
the mean angular velocity decays by only 5%. This finite difference might be
due to the existence of Ekman layers near the top and bottom plate [119].
Since at z/L = 1 we have w(r,t) = 0, as the upper plate is at rest for a = 0 or
wo = 0, 95% of the edge effects on w occur in such a thin fluid layer near the top
(bottom) plate that we cannot resolve it with our present LDA measurements.
For the angular velocity fluctuations shown in Fig. 6.2b we observe a 25%
decay in the upper 10% of the cylinder, but again in the measurement section
of the inner cylinder 0.21 < z/L < 0.79 there are no indications of any edge
effects. The plots of Fig. 6.2 together confirm that edge effects are unlikely
to play a visible role for our torque measurements in the middle-part of the
cylinder. Even the Taylor-vortex roll-structure, which dominates TC flow at
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Figure 6.2: Time averaged axial profiles of the azimuthal angular velocity
inside the T3C measured with LDA at mid-gap, i.e. 7 = (r—7;)/(ro—7;) = 0.5,
for the case Re; = 1.0 x 10° and Re, = 0 (corresponding to a = 0 and
Ta = 1.5 x 10'2). The height » from the bottom plate is normalized against
the total height L of the inner volume of the tank. (a): the time-averaged
angular velocity (w(z,7 = 1/2)); normalized by the angular velocity of the
inner cylinder wall w;. (b): the standard deviation of the angular velocity
0,(z) normalized by the angular velocity of the inner wall. The split between
the middle and the top inner cylinder sections is indicated by the dash-dotted
line at z/L = 0.79. As can be appreciated in this figure, the end-effects are
negligible over the middle section where we measure the global torques as
reported in this work. The velocities near the top plate, z/L = 1, are not
sufficiently resolved to see the boundary layer.
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Figure 6.3: Radial profiles of the azimuthal angular velocity as presented
in Fig. 6.2, scanned at three different heights z/L = 0.66, 0.50 and 0.34,
plotted against the dimensionless gap distance 7 = (r —r;)/(r, — 1), again for
Re, = 0 and Re; = 1 x 105, (a): the time-averaged angular velocity (w(7));
normalized by the angular velocity of the inner wall w;. All profiles fall on
top of each other, showing no axial dependence of the flow in the investigated
axial range. (b) Standard deviation of the angular velocity o, (7) normalized
by the angular velocity of the inner wall. The velocity fluctuations show no
significant axial dependence in the investigated axial range. The boundary
layers at the cylinder walls are not resolved.
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low Reynolds numbers [120, 121, 18, 117], is not visible at all in the time
averaged angular velocity profile (w(z,7 = 1/2,t));.

To double check that this z-independence not only holds at mid-gap 7 = 1/2
but also for the whole radial w profiles, we measured time series of w(z, 7, t) at
three different heights z/L = 0.34, 0.50, and 0.66. The radial dependence of
the mean value and of the fluctuations are shown in Fig. 6.3. The profiles are
nearly identical for the three heights, with the only exception of some small
irregularity in the fluctuations at z/L = 0.34 in the small region 0.1 < 7 < 0.2,
whose origin is unclear to us. Note that in both plots of Fig. 6.3 the radial
inner and outer boundary layers are again not resolved; in this chapter we will
focus on bulk properties and global scaling relations.

Based on the results of this section, we feel confident to claim that (i) edge
effects are unimportant for the global torque measurements done with the
middle-part of the inner cylinder reported in section 6.3 and that (ii) the local
profile and fluctuation measurements done close to mid-height z/L = 0.44,
which will be shown and analyzed in sections 6.4 and 6.5, are representative
for any height in the mid-part of the cylinder.

6.3 Global torque measurements

In this section we will present our data from the global torque measurements
for independently inner and outer cylinder rotation, which complement and
improve precision of our earlier measurements [26]. The data as functions of
the respective pairs of control parameters (Ta,a) or (Re;, Re,) for which we
performed our measurements are given in tabular form in table 6.1 and in
graphical form in Figs. 6.4a and 6.5, respectively.

A three-dimensional overview of the found parameter dependencies of the an-
gular velocity transport Nu,(Ta, a) is shown in Fig. 6.6. One immediately ob-
served a pronounced maximum in Nu,(Ta, a) with a considerable offset from
the line @ = 0. A more detailed view is obtained in cross-sections through
Fig. 6.6 and in particular in compensated plots as shown in Fig. 6.7a, where
we divided Nu,, by the approximate effective scaling ~ Ta%3?. In this way we
identify an universal effective scaling Nu,(Ta,a) o< Ta®3 by averaging over
the complete Ta-range, ignoring Ta-dependence and thus calling the scaling
effective. If each curve for each a is fitted individually, the resulting Ta-scaling
exponents 7(a) scatter with a, but at most very slightly depend on a, see Figs.
6.7b and 6.7c. For linear fits different below and above aqp; = 0.33 (actually
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Figure 6.4: (a): Reynolds number phase space showing the explored regime of the T3C
as symbols with washed-out colors. The solid green lines are the boundaries between the
unstable (upper-left) and stable (lower-right) flow region, shown here for the radius ratio
n = 0.716 as experimentally examined in this work. The green line in the right quadrant
is the analytical expression for the stability boundary as found by Ref. [17], which recovers
to the Rayleigh stability criterion Re,/Re; = n for Re;, Re, > 1, the viscous corrections
decreasing o< Re, 2. The green line in the left quadrant also follows the stability boundary
by Esser and Grossmann (Re; o Reg/5), but is taken here as Re, = 0. This inviscid
approximation is sufficient, if a is not too large, i.e. away from the stability curve. Similar to
Ref. [26], we define the parameter a = —w,/w; as the (negative) ratio between the angular
rotation rates of the outer and inner cylinders. We assume maximum instability and hence
optimal turbulence on the bisector of the unstable region, indicated by the solid red line.
(b) and (c): enlargements of the Re-space at different scales showing the curvatures of the
stability boundaries and the corresponding bisector (red). Above Re;, Re, > 10° the viscous
deviation from straight lines becomes negligible.
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Figure 6.5: The probed (Ta,a) parameter space, equivalent to the (Re;, Re,)
space shown in Fig. 6.4. Each horizontal data line corresponds to a global
torque measurement on the middle section of the inner cylinder at different
constant a (and hence ). The (blue) filled circles correspond to local mea-
surements on the angular velocity at fixed Ta and a as will be discussed in
section 6.4.
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Figure 6.6: Three-dimensional (interpolated) overview Nu,(Ta,a) of our ex-
perimental results. The color and the height correspond to the Nu, value.

below and above api = 0.368 or ¢» = 0, as will be introduced later on), we
obtain vy = 0.378 4- 0.028a £ 0.01 for a < agpt, the exponent slightly decreas-
ing towards less counter-rotation, and a constant exponent v = 0.394 4+ 0.006
for increasing counter-rotation beyond the optimum. The trend in the expo-
nents for a < aept is small and compatible with a constant v = 0.39 and a
merely statistical scatter of £0.03. It is in this approximation that Nu,(Ta, a)
factorizes.

6.3.1 Ultimate regime

Ref. [26] interpreted the effective scaling Nuy,(Ta,a) oc Ta%38, similar to our
currently obtained v = 0.39 £ 0.03, as an indication of the so-called ‘ultimate
regime’, which is distinguished by both a turbulent bulk and turbulent bound-
ary layers. Such scaling was predicted by Ref. [2] for very strongly driven RB
flow. As detailed in Ref. [2], it emerges from a Nu,(Ta) o Ta'/? scaling with
logarithmic corrections originating from the turbulent boundary layers. Re-
markably, the corresponding wind Reynolds number scaling in RB flow does
not have logarithmic corrections, i.e. Re, ~ Tal/2. These RB scaling laws for
the thermal Nusselt number and the corresponding wind Reynolds number
have been confirmed experimentally by Ref. [28] for Nu and by Ref. [47] for
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Figure 6.7: (a): Nuy,(Ta, a), compensated by Ta%3?, for various a as a function
of Ta, revealing effective universal scaling. The colored symbols follow the
same coding as given in the legend of Fig. 6.5. The solid line has the predicted
exponent from Eq. (6.12), cf. Ref. [2] and can arbitrarily be shifted in vertical
direction. Here we used Re,, = 0.0424Ta%% as found by Ref. [64] for the case
a = 0 over the range 4 x 10 < Ta < 6 x 10'2, and the von Kdrman constant
k = 0.4 and b = 0.4, resulting in a predicted exponent of 0.395 (solid line
in (b) and (c)). The Nu,(Ta) exponent for each of the individual line series,
fitted by a linear fit in log-log space, is plotted versus a in (b) and versus v in
(c). Assuming a-independence the average scaling exponent is v = 0.39+0.03,
which is well consistent with the effective exponent v = 0.387 of the first order
fit on logio(Nuy,) vs. logio(Ta) in the shown Ta-regime.
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Rey. According to the EGL theory this should have its correspondence in TC
flow. That leads to the interpretation of v = 0.39 as an indication for the ulti-
mate state in the presently considered TC flow. Furthermore, Ref. [64] indeed
found from particle image velocimetry (PIV) measurements in the present
strongly driven TC system the predicted [2] scaling of the wind, Re,, Tal/?.
We note that in our available Ta regime the effective scaling law Nu,, ~ Ta%3?
is practically indistinguishable from the prediction of Ref. [2], namely,

Nu,, ~ Tal’2L(Re, (Ta)), (6.12)

with the logarithmic corrections £(Re,(Ta)) detailed in Egs. (7) and (9) of
Ref. [2]. The result from Eq. (6.12) is shown as a solid line in Fig. 6.7a,
showing the compensated plot Nu, /Ta0'39: Indeed, only detailed inspection
reveals that the theoretical line is not exactly horizontal.

Thus, strictly speaking, there is a Ta-dependence of the scaling exponent
v(Ta), as was clearly evidenced by Refs. [8, 10] in a much larger Ta-range.
In Fig. 6.8 we present our local v(Ta) for the case of @ = 0 and we com-
pare it to the data from Ref. [10]. Similar to Ref. [10] we calculate v(Ta) =
d(log1oNuy,)/d(logipTa) by using a sliding linear fit over a certain A(log;oTa)-
range, as indicated by the top left corner of the figures (a) to (d). The narrow
averaging range used in Fig. 6.8a results into a strongly fluctuating v(Ta). The
origin of these fluctuations may be different turbulent flow states (e.g. different
number of Taylor vortices); future studies should shed more light onto this.
When averaging over a wider Ta-range, our data recovers a monotonously in-
creasing 7y(Ta) trend, as can be seen in Fig. 6.8d, which is in line with Refs.
[8, 10]. Clearly, with their large-Ta measurements these authors also already
were in the ultimate TC regime.

This gives rise to the following question: Where does the ultimate turbulence
regime set in turbulent TC flow? To find out we calculate the shear Reynolds
number Reg = Usd /v, where § is the thickness of the kinetic boundary layer,
still being of Prandtl type, and Us the shear velocity across 6. The latter
one we estimate as Us; = U; — U,,. Correspondingly, we estimate the kinetic
Prandtl-Blasius (PB) type BL thickness as § = appd/v/Re; — Re,, (see e.g.
Ref. [118]), with app set to 2.3. This results in a shear Reynolds number of
Res = apgv/Re; — Rey,. For the wind Reynolds number we take our experi-
mental result based on PIV measurements [64], namely Re,, = 0.0424Ta%4%
(in the Ta-regime from 3.8 x 10? to 6.2 x 10'2, for a = 0). This implies that the
relative contribution of the wind Re,, /Re; = U,,/U; is only around 4.6% in this
regime. Nonetheless, we take it into consideration in Fig. 6.9a, in which we
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Figure 6.8: Local Ta-dependent scaling exponent v from Nu, = Ta” for the
case of inner cylinder rotation only (a = 0). The black solid line is our exper-
imental data and the red dashed line is data from Ref. [10], see their Fig. 3
but now transformed into (Ta, Nu,)-space. The local exponent is calculated
by using a sliding linear fit over different intervals A(log;, Ta) = (a) 0.2, (b)
0.4, (c) 1.0, (d) 2.0. This method is similar to the one used in Ref. [10]. Our
data reveals a detailed local sensitivity of the scaling exponent on small Ta-
intervals, see (a). When fitting over wider Ta-intervals an overall increasing
v(Ta) with Ta becomes apparent, see (d).
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Figure 6.9: The shear Reynolds number Res in (a), and the coherence length
Leon, estimated as 10 times the Kolmogorov length scale 7y, over the TC-gap
width d in (b), both versus the driving strength (Ta lower abscissa, Re; upper
abscissa) for the case of pure inner cylinder rotation (a = 0). (a) The solid
black line results from the experimental data obtained by PIV [64]. The ex-
trapolation of this data (dashed black line) towards smaller Ta nicely agrees
with the DNS data (red crosses) of [55]. The blue shaded area indicates the
transitional regime from moderate turbulence at lower Ta (turbulent bulk with
laminar BLs) into ultimate turbulence at higher Ta (turbulent bulk with tur-
bulent BLs). (b) The solid black line is experimental data obtained by global
torque measurements (this work). The extrapolation of this data (dashed
black line) towards smaller Ta agrees with DNS data (red crosses) [55]. The
yellow shaded area indicates the transitional regime where spatial coherence
gets small enough to allow for a turbulent bulk beyond this regime.
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plot Re, vs Ta, retrieving the effective scaling Re, = 2.02Ta%?>. That figure
also shows the result of Ref. [55] from direct numerical simulation, who found
Re, = 0.01587a%53 in the Ta-regime from 4 x 10% to 1 x 107. Again, also here
the relative contribution of the wind Re, /Re; is very small, namely around
3%. These numerical results give an effective scaling of Re; = 2.05Ta%2 very
similar to our experimental findings, even prefactor-wise.

The Prandtl-Blasius type BL becomes turbulent for a shear Reynolds numbers
larger than a critical shear Reynolds number or transition shear Reynolds
number Re, 7, which is known to be in the range between 180 and 420 (see
e.g. Ref. [118]). This range is shown as shaded in Fig. 6.9: Indeed, all of our
experimental data points of this present chapter (solid line) are beyond that
onset. So indeed we are in the ultimate regime. In contrast, the numerical
data points by Ref. [55] are in the Prandtl-Blasius regime with laminar-type
boundary layers.

The transition between these two regimes occurs in between. The range 180
to 420 for the transitional shear Reynolds number Res 1 here (i.e., for the
present 17 and @ = 0) corresponds to a range between 3 x 107 to 10° for the
transitional Taylor number Tar and a range between 5 x 103 and 2 x 10* for
the transitional (inner) Reynolds number Re; 7. Indeed, this corresponds to
the transitional Reynolds number found by Ref. [10], see Fig. 3 of that paper,
in which the transition to the ultimate regime is identified at a Reynolds
number Re;r = 1.3 x 10, Below that value Ref. [10] found a very steep
increase of the local slope dlogNu, /dlogRe; with Re;, beyond the transition
the increase is much less. (Here we have translated the findings of Ref. [10]
in the notation of this chapter.) We stress again that the values given in this
and the next subsection hold for ¢ = 0. How the values of the transitional
Reynolds or Taylor number depend on a remains an important question for
future research.

Both in our experiment and in the experiments by Ref. [10] the logarithmic
corrections in eq. (6.12) are visible and have the consequence that the “real”
ultimate scaling Nu,, ~ Tal/? is never achieved. As explained in Ref. 2] (and
much earlier in Ref. [29], but differently and with a different result) these
logarithmic corrections are a consequence of the logaritmic velocity profile in
the turbulent boundary layers. Only by destroying this logarithmic profiles by
extreme wall roughness as done in TC experiments [11] or in RB experiments
[122] or by replacing the walls by periodic boundary conditions (and a volume
forcing) as done in numerical simulations [123, 124, 67] one can recover the
1/2-scaling exponent, which is obtained in the strict upper-bound [125].
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TC RB
loss of spatial coherence Taey ~ 10° Rag, =~ 107
(defined via £cop) Rejon =~ 103
BL shear instability Tar ~ 5 x 10° Rap ~ 10™
(defined via Res) Re; 1 ~ 10*

Table 6.2: Estimates for the onset of the regime where a turbulent bulk be-
comes possible next to laminar-type BLs (first row) and for the transition
towards the ultimate regime, in which the BLs are turbulent, for both TC
and RB turbulence. For TC the estimates are derived here; for RB they are
taken from the literature, namely from Ref. [126] for Raoy, (for Pr ~ 1) and for
Rar from Ref. [127] (theoretical prediction) and from Ref. [47] (experimen-
tal confirmation). In between these values laminar-type BLs and a turbulent
bulk can coexist and the transport properties can be described by the unify-
ing RB theory [45, 127, 128, 129] which later had been extended to TC by
EGL. Beyond Tap (Rap) the turbulent nature of BLs lead to different scaling
properties, as elaborated in [2].

6.3.2 Comparison Taylor-Couette turbulence with Rayleigh-Bénard turbulence

To get an idea on the extension of the non-ultimate turbulence regime in TC
flow we also estimate the coherence length ¢..,, below which the spatial co-
herence of structures in the flow gets small enough to allow for developed tur-
bulence in the flow. Typically, one estimates the coherence length as multiple
of the (mean) Kolmogorov length scale nx = v3/4/e!/*, namely ., ~ 10nk-.
The factor of 10 between these two length scales is motivated by the transition
between viscous subrange and inertial subrange which is known to happen at
a scale around 107k, see e.g. Ref. [130]. Here € is the mean energy dissipation
rate. That can be obtained from the angular velocity flux J“ (see eq. (4.7) of
EGL), namely

. 2(&)@ — Wo)Jw _ 2(&)2 - wO)Jho;mNuw, (613)

2 _ 2 2 _ 2
rs r; rs T;

reflecting the statistical balance between external driving and internal dissi-
pation. As pointed out in EGL, a more elegant way to write this balance
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is
v3 9
€~ €am = 7 (Nu,, — 1)Taoc™~. (6.14)

In any case, we can use our data for Nu,, to calculate the mean Kolmogorov
length scale nx and thus the coherence length ¢.,, = 10nx. In Fig. 6.9b
we show f. as function of Ta or Re; (for a = 0 and n = 0.716). When
the coherence length becomes smaller than, say, 0.1 to 0.5 times the outer
length scale d, one can start to reasonably speak of a developed turbulence
regime in the bulk in between the inner scale £, = 10nx and the outer scale
d. According to Fig. 6.9b this onset of a developed turbulence regime in the
bulk, but still with Prandtl-Blasius type boundary layers (see Refs. [50, 131]),
occurs at Taylor numbers Ta,, between 2 x 10° and 2 x 107 or onset (inner)
Reynolds numbers Re; o, between 300 and 3000, far below the regime of our
present experiments, but in the regime of the numerical simulations [55]. The
corresponding numbers for smaller coherence in RB flow are given in Fig. 1
of Ref. [126]: For Pr ~ 1, a developed turbulence regime in the bulk becomes
possible beyond Ra = 107.

Figures 6.9a and 6.9b together reveal that there should be a TC flow range with
Prandtl-Blasius type (laminar) BLs and a turbulent bulk roughly in between
Ta =~ 10% and Ta =~ 5 x 10® or Re; in between Re; =~ 10% and 10%. This regime
has been explored in the earlier experiments by Refs. [9, 8, 10] and others—it
cannot be accessed with water as operating liquid in our T3C setup as then the
angular velocities would have to be too low for reasonable precision. We could,
however, explore that regime with more viscous liquids in our T?C setup.
Our present estimates for TC flow and the earlier findings and estimates for
RB flow are summarized in table 6.2. The table gives rise to the interesting
question: Why is the “classical regime” (as it is called by Ahlers) in between
Raon and Rag, in which a laminar-type BL and a turbulent bulk coexist and
in which the unifying theory [45, 127, 128, 129] is applicable, so extended in
RB turbulence, but so small in TC turbulence? Or in other words: Why does
the ultimate regime with its turbulent BLs set in for much smaller Ta in TC
flow as compared to the extremely high Ra values for that onset in RB flow?
We think that the answer lies in the much higher efficiency of the shear driving
in TC flow as compared to the thermal driving in RB flow. In RB flow the shear
instability of the kinetic BL is induced by the thermal driving only indirectly;
namely, the driving first induces a large scale wind, which then in turn builds
up the shear near the boundaries. In TC flow the flow is directly driven by
the rotating inner cylinder, giving rise to a very large direct shear. As pointed
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above, the large scale wind with its strength Re,, only means a small correction
of 4 — 5% to Re; in the calculation of the shear Reynolds number. As roughly
Res ~ Re'/? o Tal/%, a factor 20 in the Reynolds number leads to the huge
difference 20* = 1.6 x 10° in the typical onset Taylor number.

6.3.3 Optimal angular velocity transport

Coming back to our experimental data on TC: The (nearly) horizontal lines
in Fig. 6.7a imply that Nu,(Ta,a) within present experimental precision
nearly factorizes in Nuy,(Ta,a) = f(a) - Ta%39+%03 We now focus on the a-
dependence of the angular velocity flux amplitude f(a) = Nuy(Ta,a)/Ta%3?,
shown in Figs. 6.10a and 6.10b, and the idea of its interpretation. One ob-
serves a very pronounced maximum at aop; = 0.33+£0.04, reflecting the optimal
angular velocity transport from the inner to the outer cylinder at that angu-
lar velocity ratio. This value is obtained by averaging over the three data
points making up the small plateau visible in Fig. 6.10b. Naively, one might
have expected that f(a) has its maximum at a = 0, i.e. w, = 0, no outer
cylinder rotation, since outer cylinder rotation stabilizes an increasing part
of the flow volume for increasing counter rotation rate. On the other hand,
outer cylinder rotation also enhances the total shear of the flow, leading to
enhanced turbulence, and thus more angular velocity transport is expected.
The a-dependence of f(a) thus reflects the mutual importance of both these
effects.

Generally, one expects an increase of the turbulent transport if one goes deeper
into the control parameter range (Ta,a) in which the flow is unstable. We
speculate that the optimum positions for the angular velocity transport should
consist of all points in parameter space, which are equally distant from both
the right branch (1st quadrant, co-rotation) of the instability border and its left
branch (2nd quadrant, counter-rotation). In inviscid approximation (v = 0)
these two branches are given by the Rayleigh criterion, d(r?w)/d(r) > 0,
resulting in the lines given by the relations w;/wo|Rayleigh = n~2 and w; = 0,
which translate into a = —n? and a = oo, respectively. The line of equal
distance from both is the angle bisector of the instability range. Its relation
can easily be calculated to be

abis(n) = ! (6.15)

 tan [Z — arctan (n~1)]
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Figure 6.10: Amplitude f of the effective scaling law Nu,, o< Ta%3? (shown in

Fig. 6.7) as function of a (a, b) and as function of ¢(a) (¢, d). The dashed
line in all figures corresponds to the suggested case of optimal turbulence as
given by the angle bisector Eq. (6.15), i.e. apis = 0.368. (The connecting lines
between the data points are guides for the eyes.) The standard deviation of
Nu,, Ta=%39 is similar to the size of the symbols in (a) and (c), and is indicated
by the error bars of the zoomed-in figures (b) and (d). The angular velocity
transport flux amplitude is systematically larger towards the co-rotating in-
stability borders a = —n? or 1) ~ —62.8° with respect to the counter-rotating
instability borders a — oo or ¥ = 62.8°.
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Figure 6.11: (a): The transformation from a to v as given by Eq. (6.16), shown
here for the radius ratio n = 0.716 used in the present work. Note that the
domain of a = [—n?, 0o] from co- to counter-rotation, spanning the complete
unstable flow regime, is transformed to the range ¢ ~ [—62.80°, +62.80°] for
this specific 7. (b): The dependence of ap;s on 1 as given by Eq. (6.15), shown
as the red line. Four circles: the radius ratios accessible in the T3C, i.e.
n = 0.716;0.769; 0.833; 0.909. Blue indicated circle: radius ratio n = 0.716 of
the present work, suggesting optimal turbulence at apis = 0.368.

For n = 0.716 this gives apis = 0.368. Note that the measured value aqpy =
0.33 + 0.04 agrees indistinguishably within experimental precision with the
bisector line, supporting our interpretation. It also explains why only the
lines of constant a scan the parameter space properly. This reflects the straight
character of the linear instability lines; as long as one is not too close to them
to see the details of the viscous corrections, i.e. if Ta is large and a is well off the
instability borders at a = —n? for co-rotation and a — oo for counter-rotation.
Instead of characterizing the lines by the slope parameter a one can introduce
the angle 1) between the line of chosen a and the angle bisector of the instability
range denoted by ap;s; thus a = apis corresponds to ¥ = 0.

-1

P(a) = ™ —arctan (1) — arctan (ﬁ) . (6.16)
2 a

The transformation (6.16) is shown in Fig. 6.11a and the resulting f(¢(a)) in

Fig. 6.10c. The function f(a) as a function of a is strongly asymmetric both

around its peak at aqpy and at its tails, presumably because of the different vis-

cous corrections at a = —n? (decreasing o< Re; ? towards the inviscid Rayleigh

. . . . . 3/5
line) and at a = oo (nonvanishing, even increasing correction o Red/ ) (and
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non-normal-nonlinear (shear) instability, see e.g. Ref. [132]).

We do not yet know whether the optimum of f(a) coincides with the bisector
of the Rayleigh-unstable domain for all . Both could coincide incidentally for
n = 0.716, analyzed here. But if this were the case for all n, we can predict the
n-dependence of aopt(n). This then is given by equation (6.15). This function
is plotted in Fig. 6.11. In future experiments we shall test this dependence
with our T3C facility. The three extra points we will be able to achieve are
marked as white, empty circles. The precision of our facility is good enough
to test equation (6.15), but clearly further experiments at much smaller n are
also needed.

We note that for smaller Ta one can no longer approximate the instability
border by the inviscid Rayleigh lines. The effect of viscosity on the shape
of the border lines has to be taken into account. The angle bisector of the
instability range in (Re,, Re;)-parameter space (Fig. 6.4a) will then deviate
from a straight line; we therefore also expect this for agp;. The viscous cor-
rections of the Rayleigh instability criterion were first numerically calculated
[120] for the case of a = 0, and then analytically estimated [17] and later fitted
[133]. Figures 6.4b and 6.4c show enlargements of the (Re,, Re;)-parameter
space, together with the Rayleigh-criterion (green) and the analytical curve
[17] (black) for n = 0.716. Note that the minimum of that curve is not at
Re, = 0, but shifted to a slightly negative value Re, ~ —5, where the in-
stability sets in at Re; ~ 82. If we again assume that the optimum position
for turbulent transport is distinguished by equal distance to the two branches
of the Esser-Grossmann curve, we obtain the red curve in Fig. 6.4b. On
the Ta-scale of Figs. 6.4c and 6.4a it is indistinguishable from a straight line
through the origin and can hence be described by Eq. (6.15). As another con-
sequence of the viscous corrections, the factorization of the angular velocity
transport flux Nu, = f(a) - F(Ta) will no longer be a valid approximation in
the parameter regime shown in Fig. 6.4b. For this to hold Ta must be large
and a well off the instability lines. This could further be tested by choosing
the parameter a sufficiently large, the line approaching or even cutting the
stability border for strong counter-rotation. Then the factorization property
will clearly be lost.

Future low Ta experiments and/or numerical simulations for various a will
show how well these ideas on understanding the existence and value of agp¢,
being near or equal to apis, are correct or deserve modification. Of course,
there will be some deviations due to the coherent structures in the flow at
lower Ta, due to the influence of the number of rolls, etc. Similar to how
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in RB the Nu scaling shows discontinuities, the TC scaling exponent of Nuy,
shows all these structures for not sufficiently large Ta, see e.g. Fig. 3 of Ref.
[10] in which one sees how strongly the exponent o depends on Re up to 10*
(Ta about up to 108).

6.4 Local LDA angular velocity radial profiles

We now wonder on whether the distinguishing property of the flow at agp—
maximal angular velocity transport—is also reflected in other flow charac-
teristics. We therefore performed LDA measurements of the angular veloc-
ity profiles in the bulk close to mid-height, z/L = 0.44, at various —0.3 <
a < 2.0, see table 6.3 for a list of all measurements, Fig. 6.12 for the mean
profiles (w(r,t)), at fixed height z, and Fig. 6.13 for the rescaled profiles
((w(r,t)); — wo)/(wi —ws), also at fixed height z. With our present LDA tech-
nique, we can only resolve the velocity in the radial range 0.04 < 7 < 0.98;
there is no proper resolution in the inner and outer boundary layers. Because
the flow close to the inner boundary region requires substantially more time
to be probed with LDA, due to disturbing reflections of the measurement vol-
ume on the reflecting inner cylinder wall necessitating the use of more stringent
Doppler burst criteria, we limit ourselves to the range 0.2 < 7 < 0.98.

From Fig. 6.12 it is seen that for nearly all co- and counter-rotating cases
—0.3 < a < 2.0 the slope of (w(7,t)), is negative. Only around a = 0.40 we
find a zero mean angular velocity gradient in the bulk. This case is very close to
aopt = 0.33 £0.04 and apis = 0.368. The normalized angular velocity gradient
as function of a is shown in Fig. 6.14a. Indeed, it has a pronounced maximum
and zero mean angular velocity gradient very close to a = apis & aopt, the
position of optimal angular velocity transfer. Ref. [54], who performed PIV
measurements of TC flow in air around Ta ~ 10'°, report a similar trend of
a diminishing angular velocity gradient in the center of the TC gap for their
investigated a coming from 10.79 down towards 0.70, i.e. in the well counter-
rotating regime. We speculate that their trend would continue and result
in a diminishing slope of angular velocity when decreasing a further to their
(unreported) case of aopt. Interestingly, the result of a zero angular velocity
gradient across the gap is quite similar to what can be found in Taylor vortex
flow, for which the axially-averaged circumferential momentum or velocity is
nearly uniform across the gap in the bulk, see e.g. Refs. [134, 135]. We note
that in strongly turbulent RB flow the temperature also has a (practically)
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zero mean gradient in the bulk, see e.g. the recent review [6].

A transition of the flow structure at a = apis = aopt can also be confirmed
in Fig. 6.13a, in which we have rescaled the mean angular velocity at fixed
height as

(@) = (W)t = wo) /(wi = wo)- (6.17)

We observe that up to a = apis the curves for (@(7)); for all a go through
the mid-gap point (7 = 1/2,(w(1/2)): ~ 0.35), implying the mid-gap value
(w(1/2))¢ =~ 0.35w; + 0.65w, for the time averaged angular velocity. However,
for @ > aps, i.e. stronger counter-rotation, the angular velocity at mid-gap
becomes larger, as seen in Fig. 6.13b.

Figure 6.14b shows the relative contributions of the molecular and the tur-
bulent transport to the total angular velocity flux J“ (6.6), i.e. for both the
diffusive and the advective term. The latter always dominates by far with val-
ues beyond 99%, but at a & ap;s the advective term contributes 100% to the
angular velocity flux and the diffusive term nothing, corresponding to the zero
mean angular velocity gradient in the bulk at that a. This special situation
perfectly resembles RB turbulence for which, due to the absence of a mean
temperature gradient in the bulk, the whole heat transport is conveyed by the
convective term. In the (here unresolved) kinetic boundary layers the contri-
butions just reverse: The convective term strongly decreases if 7 approaches
the cylinder walls at 0 or 1 since u, — 0 (u, — 0 in RB), while the diffusive
term (heat flux in RB) takes over at the same rate, as the total flux J* is an
7-independent constant.

From the measurements presented in Fig. 6.12 we can extract the neutral line
7, defined by (w(7,,t)), = 0 at fixed height z/L = 0.44 for the turbulent
case. The neutral line is, of course, part of a neutral surface throughout the
TC volume. We expect that for large a > agpt, the flow will be so much
stabilized that an axial dependence of the location of the neutral line shows
up, in spite of the large Ta numbers, in contrast to the cases a ~ aqpy where
we expect the location of the neutral line to be axially independent for large
enough Ta. The results on 7,, are shown in Fig. 6.15. Note that while for a < 0
(co-rotation) there obviously is no neutral line at which (w); = 0, for a > 0
a neutral line exists at some position 7, > 0. As long as it still is within the
outer kinematic BL, we cannot resolve it. This turns out to be the case for
0 < a < apis. But for apis < a the neutral line can be observed within the bulk
and is well resolved with our measurements. So again we see two regimes: For
0 < a < apis in the laminar case the stabilizing outer cylinder rotation shifts
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Figure 6.12: Radial profiles of the time-averaged angular velocity (w(7)); at
fixed height z/L = 0.44, normalized by the inner cylinder angular velocity
w;, for various cases of fixed a, as indicated by the blue filled circles in Fig.
6.5. All profiles are acquired at fixed angular rotation rates of the cylinders
in such a way that Re; — Re, = 10° is maintained. Instead of measuring at
mid-height z/L = 0.50 we measure at z/L = 0.44, because this axial position
encounters less visual obstructions located on the clear acrylic outer cylinder.
To improve visual appearance the plotted range does not fully cover the profile
corresponding to a = 2. The profiles of a = 0.5, 0.6, and 0.7 appear less smooth
due to a fluctuating neutral line combined with slightly insufficient measuring
time, i.e. convergence problems.
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Figure 6.13: (a) Rescaled angular velocity profiles (0(7)); = ((w(F)) —
Wo)/(wi — wy) for various a. For a < ap;s = 0.368 all of these curves cross the
point (7 = 1/2,(@); = 0.35). For a > ap;s = 0.368 this is no longer the case.
The transition of the quantity (&(7 = 1/2)), when a increases from a < apis to
apis < @ is shown in (b). The dashed vertical line indicates apis = 0.368 & aopt.
The solid black lines in (a) and (b) show the @(7) values for the laminar so-
lution (6.7). The dashed red line in (a) shows the Busse upper bound profile
(6.19), which is independent of the ratio a and is nearly indistinguishable from
the measurement for a = 0.
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Figure 6.14: (a) Radial gradient 0,(w): of the angular velocity profile in the
bulk of the flow, non-dimensionalized with the mean w-slope |w, — w;| /(ro—7;).
The values are obtained from Fig. 6.12 by fitting a cubic smoothing spline
to the profiles in order to increase the accuracy of the gradient amplitude
estimate. Note that the radial gradients are negative throughout, and approach
zero when close to a = apis & aept. (The connecting lines are guides for
the eyes.) (b) Resulting ratio of the viscous angular velocity transport term
—r3v0,{(w) a4+ to the total transport J* (red squares and left axis) and ratio of
the advective angular velocity transport term ri(urw At to the total transport
J¥ (green circles and right axis) for the various a. These ratios correspond to
the second and first term of equation (6.6), respectively.
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Figure 6.15: The measured radial position 7,, = (r, — r;3)/(ro — r;) of the
neutral line defined by (w(7,)): = 0 at fixed height z/L = 0.44 as function of
a, indicated by the circles. The values are obtained from Fig. 6.12 by fitting
a cubic smoothing spline to the profiles in order to increase the accuracy of
locating 7, resulting in an accuracy equal to the symbol size. The straight
vertical line corresponds to apis = 0.368, below which the neutral line is within
the outer BL: and cannot be resolved by our LDA technique. The solid line
corresponds to the neutral line in the laminar case calculated analytically
with Eq. (6.7). Note that for significant counter-rotation a = 1 and for this
particular height, the neutral line in the turbulent case lies farther inside,
nearer to the inner cylinder, than in the laminar flow case.
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the neutral line inwards, but due to the now free boundary between the stable
outer r-range and the unstable range between the neutral line and the inner
cylinder, the flow structures extend beyond 7,. Thus also in the turbulent
flow case the unstable range flow extends to the close vicinity of the outer
cylinder. The increased shear and the strong turbulence activity originating
from the inner cylinder rotation are too strong and prevent that the neutral
line is shifted off the outer kinematic BL. As described in Ref. [17], this is the
very mechanism which shifts the minimum of the viscous instability curve to
the left of the Re; = 0 axis. Therefore, the observed behavior of the neutral
line position as a function of a is another confirmation of above idea that agpt
coincides with the angle bisector apis of the instability range in parameter
space. The small Re, and the large Re, behaviors perfectly merge. Only
for a > aqpy the stabilizing effect from the outer cylinder rotation is strong
enough, the width of the stabilized range is broad enough, so that a neutral
line 7,, can be detected in the bulk of the TC flow. This behavior is similar to
what is reported [54], see their Fig. 6.

One would expect that for much weaker turbulence Ta < 10!! the capacity
of the turbulence around the inner cylinder to push the neutral line outwards
would decrease, leading to a smaller a,p; for these smaller Taylor numbers.
Numerical simulations by H. Brauckmann and B. Eckhardt of the University
of Marburg (Ta up to 10?) and independently ongoing DNS by Ref. [55] of the
University of Twente (presently Ta up to 10%) seem to confirm this view.

For much weaker turbulence one would also expect a more pronounced height-
dependence of the neutral line, which will be pushed outwards where the
Taylor-rolls are going outwards and inwards where they are going inwards.
Based on our height-dependence studies of section 6.2, we expect that this
height dependence will be much weaker or even fully washed out in the strongly
turbulent regime Ta > 10'! in which we operate the TC apparatus. However,
in Fig. 6.15 we observe that the neutral line in the turbulent case lies more
inside than in the laminar case, and this result is difficult to rationalize apart
from assuming some axial-dependence of the neutral line location, 7.e. more
outwards locations of the neutral line at larger and smaller height. In future
work we will study the axial dependence of the neutral line in the turbulent
and counter-rotating case in more detail.

For completeness, we also compare our experimental angular velocity profiles
with those employed in the upper bound theory [114]. Ref. [114] derived an
expression for the angular velocity profiles in the limit of infinite Reynolds
number. Translating that expression to the notation used in the present work,
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Figure 6.16: Normalized angular velocity (w(7)):/w; versus normalized gap
distance 7 for various a. The symbols indicate the experimental data as already
presented in Fig. 6.12 and Fig. 6.13a. To improve visual appearance only a
selection on the a-cases is shown. The thick solid lines are given by Eq. (6.18)
for n = 0.716.
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As already shown by Ref. [10], for the case a = 0 excellent agreement between
the Busse profile and the experimental one is found. However, for a farther
away from zero there is more discrepancy between the experimental data and
the profiles suggested by the upper-bound theory, as shown in Fig. 6.16a.
When we rescale the angular velocity profiles to @, according to Eq. (6.17),
the profiles as given by the upper-bound theory [114] fall on top of each other
for all a,

2 2 (.2 2
-~ WBusse — Wo T To (Ti To ) 2 2
Busse Wi — W 4 (rot —r) 72 ¢ ' (6.19)

In contrast to the collapsing upper-bound profiles, the experimental data in
Fig. 6.16b show a different trend. Clearly, the profiles suggested by the upper
bound theory are in general not a good description of the physically realized
profiles, apart from the ¢ = 0 case. Given the complexity of the flow this may
not be surprising.
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While in this section we have only focused on the time-mean values of the
angular velocity, in the following section we will give more details on the
probability density functions (PDF) in the two different regimes below and
above apis and thus on the different dynamics of the flow in these two different
regimes.

6.5 Turbulent flow organization in the gap between the cylinders

Time series of the angular velocity at 7 = 0.60 below the optimum amplitude
at a = 0.35 < ap;s = 0.368 (co-rotation dominates) and above the optimum
at a = 0.60 > apis = 0.368 (counter-rotation dominates) are shown in Fig.
6.17a and 6.17b, respectively. While in the former case we always have w(t) >
0 and a Gaussian distribution (see Fig. 6.18a) in the latter case we find a
bimodal distribution with one mode fluctuating around a positive angular
velocity and one mode fluctuating around a negative angular velocity. This
bimodal distribution of w(t) is confirmed in various PDFs shown in Fig. 6.18.
We interpret this intermittent behavior of the time series as an indication
of turbulent bursts originating from the turbulent region in the vicinity of
the inner cylinder and penetrating into the stabilized region near the outer
cylinder. We find such bimodal behavior for all a > ay;s, see Figs. 6.18d-i,
whereas for a < apis we find a unimodal behavior, see Figs. 6.18a—c. Apart
from one case (a = 0.50) we do not find any long-time periodicity of the bursts
in w(t). In future work we will perform a full spectral analysis of long time
series of w(t) for various a and 7.

Three-dimensional visualizations of the w(¢) PDF for all 0 < 7 < 1 are provided
in Fig. 6.19 for unimodal cases a < ap;s and in Fig. 6.20 for bimodal cases
a > apis- In the latter figure the switching of the system between positive and
negative angular velocity becomes visible.

Further details on the two observed individual modes such as their mean and
their mixing coefficient are given in Figs. 6.21 for a = 0.60 and a = 0.70, both
well beyond ap;s. In both cases one observes that the contribution from the
large-w-mode (red curve, w > 0, apart from positions close to the outer cylin-
der) is as expected highest at the inner cylinder and fades away when going
outwards, whereas the small-w-mode has the reverse trend. Note however that
even at 7 = 0.20, e.g. relatively close to the inner cylinder, there are moments
for which w is negative, i.e. patches of stabilized liquids are advected inwards,
just as patches of turbulent flow are advected outwards.
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Figure 6.17: Time series of the dimensionless angular velocity @(t) as de-
fined in Eq. (6.17) but without t-averaging, acquired with LDA. (a) a = 0.35,
co-rotation dominates, at 7 = 0.60 with an average data acquisition rate of
456 Hz. (b) a = 0.60, counter-rotation dominates, same 7 = 0.60 with an
average data acquisition rate of 312 Hz. Figure (a) shows a unimodal veloc-
ity distribution whereas Figure (b) reveals a bimodal distribution interpreted
as caused by intermittent bursts out of the unstable inner regime with an-
gular velocity between w; and w = 0, i.e. (w, —0)/(wp —w;) < @ < 1 into
the stable outer regime with angular velocity between w = 0 and wy, i.e.
0 <@ < (wo —0)/(wo — wj). The solid pink line indicates the neutral line
w = 0, corresponding to @ = w,/(w, — w;) = a/(1 + a), for the specific a.
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Figure 6.18: Probability density functions of the angular velocity w(t) distri-
butions for various cases of a and position 7 = (r —r;)/(r, — 7). (a) a = 0.20,
7 = 0.60, (b) a =0.30, 7 = 0.60, and (c) a = 0.35, 7 = 0.60. The other panels
all show a = 0.60 but at different non-dimensional gap distances 7. (d) 0.20,
(e) 0.29, (f) 0.41, (g) 0.51, (h) 0.60, and (i) 0.80. The gold circles indicate
the measured distribution obtained by LDA. While for (a), (b), and (c) one
Gaussian distribution (black solid curve) describes the data well, for (e) to (i)
a superposition of two Gaussians is needed for a good fit (blue and red curves).
We call the two Gaussians the two ‘modes’ of the flow. The fitting algorithm
gives the mean, the standard deviation, and the mixture coefficient of modes
1 and 2, which recombine to the black solid line, describing the measured dis-
tribution well. The dashed pink vertical line shows the neutral line w = 0,
implying @ = w,/(w, — w;) = a/(1 + a).
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Figure 6.19: Three-dimensional visualization of the (normalized) angular ve-
locity PDF with a contiuous scan of 7 for two unimodal cases (a) a = 0.20 and
(b) a = 0.30, both being smaller than ays = 0.368. The pink line corresponds
to the neutral line w =0, i.e. © = w,/(wo —w;i) =a/(1+ a).

This mechanism resembles the angular velocity exchange mechanism suggested
by Ref. [136] just beyond onset of turbulence. These authors suggest that for
the counter-rotating case there is an outer region which is centrifugally stable,
but subcritically unstable, thus vulnerable to distortions coming from the
centrifugally unstable inner region. Inner and outer region are separated by the
neutral line. For the low Re of Ref. [136] the inner region is not yet turbulent,
but displays interpenetrating spirals, i.e. a chaotic flow with various spiral
Taylor vortices. For our much larger Reynolds numbers the inner flow will
be turbulent and the distortions propagating into the subcritically unstable
outer regime will be turbulent bursts. These then will lead to intermittent
instabilities in the outer regime. In future work these speculations must further
be quantified.
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Figure 6.20: Same as in Fig. 6.19, but now for the bimodal cases a > apis =
0.368. (a) a = 0.50, (b) a = 0.60, (c¢) a = 0.70, and (d) @ = 1.00. The bimodal
character with one mode being left of the neutral line w = 0 and the other
mode being right of the neutral line becomes particularly clear for (b) and (c).
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Figure 6.21: (a) The time-averaged, normalized angular velocity (@(7,t)),
(black symbols) and of the two individual modes (blue and red) for a = 0.60.
(b) Same as fig. a but for a = 0.70. (c) The mixing coefficient cpix (7) defined
as the relative contribution of the area underneath the PDF of the respective
individual mode with respect to the total PDF area. (d) Same as fig. ¢ but

for a = 0.70.



6.6 Summary and discussion

In conclusion, we have experimentally explored strongly turbulent TC flow
with Ta > 10! in the co- and counter-rotating regimes. We find that in this
large Taylor number Ta regime and well off the instability lines the dimen-
sionless angular velocity transport flux within experimental precision can be
written as Nu,(Ta,a) = f(a) - Ta? with, within our accuracy, an universal
v =0.39+0.03 for all a. This is the effective scaling exponent of the ultimate
regime of TC turbulence predicted by [2] for RB flow and transferred to TC by
the close correspondence between RB and TC elaborated in the EGL theory.
When starting off counter-rotation, i.e. when increasing a beyond zero, the
angular velocity flux does not reduce but instead is first further enhanced, due
to the enhanced shear, before finally, beyond a = agpt ~ 0.33, the stabilizing
effect of the counter-rotation leads to a reduction of the angular velocity trans-
port flux Nu,,. Around the aqp the mean angular velocity profile was shown
to have zero gradient in the bulk for the present large Ta. Despite already
significant counter-rotation for 0 < a < aept there is no neutral line outside
the outer BL; furthermore the probability distribution function of the angular
velocity has only one mode. For larger a, beyond a > aqpt, a neutral line can
be detected in the bulk and the PDF here becomes bimodal, reflecting inter-
mittent burst of turbulent patches from the turbulent inner r regime towards
the stabilized outer r regime. We offered a hypothesis which gives a unifying
view and consistent understanding of all these various findings.
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Radius ratio dependence®

Taylor-Couette flow with independently rotating inner (i) and outer (o) cylinders
is explored numerically and experimentally to determine the effects of the radius
ratio 77 on the system response. Numerical simulations reach Reynolds numbers
of up to Re; = 9.5 - 103 and Re, = 5 - 103, corresponding to Ta up to Ta = 108
for four different radius ratios n = r;/r, between 0.5 and 0.909. The experiments,
performed in the Twente Turbulent Taylor-Couette (T3C) setup, reach Reynolds
numbers of up to Re; = 2 - 10% and Re, = 1.5 - 105, corresponding to Ta =
5 - 10*2 for n = 0.714 — 0.909. Effective scaling laws for the torque J*(Ta) are
found, which for sufficiently large driving Ta are independent of 7. As previously
reported for 7 = 0.714, optimum transport at a non-zero Rossby number Ro =
Tilwi —Wo|/[2(ro — 73)wo) is found in both experiments and numerics. Here Rogpt
is found to depend on 7 and Ta. At a driving in the range between Ta ~ 3 - 10%
and Ta =~ 10'9, Roopt saturates to an asymptotic 7-dependent value. Theoretical
predictions for the asymptotic value of Rogp: are compared to the experimental
results, and found to differ notably. Furthermore, the local angular velocity profiles
from experiments and numerics are compared, and a link between a flat bulk profile
and optimum transport for all 7 is reported.

°Published as: R. Ostilla Ménico Sander G. Huisman, Tim. J. G. Jannink, Dennis P.M. van
Gils, Roberto Verzicco, Siegfried Grossman, Chao Sun, and Detlef Lohse, Optimal Taylor-Couette
Flow: radius ratio dependence, J. Fluid. Mech. 747, 1-29 (2014). Numerical simulations are
done by Ostilla Ménico under supervision of Verzicco. Writing of the manuscript about the
numerics is done by Ostilla Ménico, experimental part is written by Huisman and Sun. Most of
the experiments are performed by Jannink under supervision of Huisman and van Gils. Discussion
of the results and proofreading of the manuscript was done by everyone.
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7.1 Introduction

Taylor-Couette (TC) flow consists of the flow between two coaxial cylinders
that are independently rotating. A schematic drawing of the system can be
seen in Fig. 7.1. The rotation difference between the cylinder shears the
flow, thus driving the system. This rotation difference has been traditionally
expressed by two Reynolds numbers, the inner cylinder Re; = rw;d/v and
the outer cylinder Re, = r,w,d/v Reynolds numbers, where r; and r, are the
radii of the inner and outer cylinder, respectively, w; and w, the inner and
outer cylinder angular velocity, d = r, — r; the gap width, and v the kine-
matic viscosity. The geometry of TC is characterized by two nondimensional
parameters, namely the radius ratio n = r; /7, and the aspect ratio I' = L/d.
Instead of taking Re; and Re,, the driving in TC can alternatively be charac-
terized by the Taylor Ta and a rotation ratio, here chosen to be the Rossby Ro
number. The Taylor number can be seen as the non-dimensional forcing (the
differential rotation) of the system defined as Ta = o (1, — ;) (1o + 74)%(wo —
w;)?/(4v?), or

r8d?

= 2.2 2
r2riv

Ta (wo — w;)>. (7.1)
Here 0 = ri/rg with 7, = (r, + r;)/2 the arithmetic and r, = /ror; the
geometric mean radii. The Rossby number is defined as:

lw; — wo|Ti

R pu—
© 2wod

(7.2)

and can be seen as a measure of the rotation of the system as a whole. Here
Ro < 0 corresponds to counter-rotating cylinders, and Ro > 0 to corotating
cylinders.

TC is among the most investigated systems in fluid mechanics, mainly owing
to its simplicity as an experimental model for shear flows. TC is in addition
a closed system, so global balances that relate the angular velocity transport
to the energy dissipation can be obtained. Specifically, in Eckhardt, Gross-
mann & Lohse (2007) [1] (from now on referred to as EGL 2007), an exact
relationship between the global parameters and the volume-averaged energy
dissipation rate was derived. This relationship has an analogous form to the
one that can be obtained for Rayleigh-Bénard (RB) flow, i.e. a flow in which
heat is transported from a hot bottom plate to a cold top plate.
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Figure 7.1: Schematic of the Taylor-Couette system. The system consists of
two coaxial cylinders, which have an inner cylinder radius of r; and an outer
cylinder radius of r,. Both cylinders are of length L. The inner cylinder
rotates with an angular velocity w; and the outer cylinder rotates with an
angular velocity of w.



112 CHAPTER 7. RADIUS RATIO

TC and RB flow have been extensively used to explore new concepts in fluid
mechanics. Instabilities [137, 19, 109, 138, 139, 140], nonlinear dynamics and
chaos [141, 142, 143, 121, 144], pattern formation [18, 20, 145], and turbulence
[146, 45, 147, 9, 6, 7] have been studied in both TC and RB, and both numer-
ically and experimentally. The main reasons behind the popularity of these
systems are, in addition to the fact that they are closed systems, as mentioned
previously, their simplicity due to the high amount of symmetries present. It
is also worth noting that plane Couette flow is the limiting case of TC when
the radius ratio n = 1.

Experimental investigations of TC have a long history, dating back to the
initial work in the end of the 1800s by [148] in France, who concentrated
on outer cylinder rotation and developed the viscometer, and [149] in the
United Kingdom, who also rotated the inner cylinder and found indications of
turbulence. Later work by [14] and [150], greatly expanded on the system, the
former measuring torques and velocities for several radius and rotation ratios
in the turbulent case, and the latter being the first to mathematically describe
the cells which form if the flow is linearly unstable. The subject can be traced
back further to Stokes, and even further to Newton. For a broader historical
context, we refer the reader to [151].

Experimental work continued during the years [31, 18, 152, 9, 8, 10, 21, 26,
27, 64] at low and high Ta numbers and for different ratios of the rotation
frequencies a = —w,/wj; thus a is positive for counter-rotation and negative
for co-rotation. Here —a = u, another measure used for the ratio of rotation
frequencies. This work has been complemented by numerical simulations, not
only in the regime of pure inner cylinder rotation [153, 136, 53, 154, 155], but
also for eigenvalue study [156], and counter-rotation at fixed a [154]. Recently
[56, 55], simulations have also explored the effect of the outer cylinder rotation
on the system at large Reynolds numbers.

The recent experiments [21, 26, 27, 69] and simulations [56, 55] have shown
that at fixed Ta an optimal angular momentum transport is obtained at non-
2ero Gopy, and that the location of this maximum aqp varies with Ta. However,
both experiments and simulations have been restricted to two radius ratios,
namely n = 0.5 and n = 0.714. The same radius ratios were also used for
studies carried out on scaling laws of the torque and the ‘wind’ of turbulence
at highly turbulent Taylor numbers [10, 27, 26, 64, 69]. Up to now, it is not
clear how the radius ratio affects the scaling laws of the system response or
the recently found phenomena of optimal transport as a function of Ta.

Two suggestions were made to account for the radius ratio dependence of
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optimal transport. Van Gils et. al (2011b) [26] wondered whether the optimal
transport in general lies in or at least close to the Voronoi boundary (meaning
a line of equal distance) of the Esser-Grossmann stability lines [17] in the
(Reo, Re;) phase space as it does for n = 0.714. However, this bisector value
does not give the correct optimal transport for n = 0.5 [69, 157]. Therefore [56]
proposed a dynamic extension of the Esser-Grossmann instability theory. This
model correctly gives the observed optimal transport (within experimental
error bars) between n = 0.5 and n = 0.714 for three experimental datasets
[14, 27, 26] and one numerical data set [157], but it is not clear how it performs
outside the n-range [0.5,0.714].

In this chapter, we study the following questions. How does the radius ratio n
affect the flow? How are the scaling laws of the angular momentum transport
affected? What is the role of the geometric parameter called pseudo-Prandtl
number ¢ introduced in EGL07? Can the effect of the radius ratio be inter-
preted as a kind of non-Oberbeck-Boussinesq effect, analogous to this effect
in Rayleigh-Bénard flow? Finally, are the predictions and insights of [26], [55]
and [157] on the optimal transport also valid for other values of n?

In order to answer these questions, both direct numerical simulations (DNS)
and experiments have been undertaken. Numerical simulations, with periodic
axial boundary conditions, have been performed using the finite-difference
code previously used in [55]. In these simulations, three more values of 7 have
been investigated: one in which the gap is larger (n = 0.5), and two in which
the gap is smaller (7 = 0.833 and 0.909). With the previous simulations from
[55] at n = 0.714, a total of four radius ratios has been analyzed.

In both experiments and numerics, only one aspect ratio I' has been studied
for every radius ratio. Since the work of [158] it is known that multiple flow
states with a different amount of vortex pairs can coexist in TC for the same
non-dimensional flow parameters. However, with increased driving, the bifur-
cations become less important and many branches do not survive. Indeed, [10]
found that for pure inner cylinder rotation only one branch with 8 vortices
(for T' = 11.4 and n = 0.714) remains when Re; is increased above 2 - 10%. As
the Reynolds numbers reached in the experiments greatly exceed this value we
do not expect to see the effect of multiple states in the current experimental
results.

For the numerical simulations, axially periodic boundary conditions have been
taken. [56] already studied the effect of the axial periodicity length on the
system, and found that for a fixed vortical wavelength, the number of vortices
does not affect the overall flow behaviour. It was also found that, in analogy
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to experiments, the effect of vortical wavelength, and hence of multiple states,
becomes smaller with increased driving. However, changes between states can
still be seen for small drivings.

Figure 7.2 shows the (Ta,1/Ro) parameter space explored in the simulations
for the four selected values of the radius ratio n. A higher density of points has
been used in places where the global response (Nu,, Re,) of the flow shows
more variation with the control parameters Ta and 1/Ro. A fixed aspect ratio
of I' = 27 has been taken for all simulations, and axially periodic boundary
conditions have been used. These simulations have the same upper bounds of
Ta (or Re;) as the ones of [55].

In addition to these simulations, experiments have been performed with the
Twente Turbulent Taylor-Couette (T3C) facility, with which we achieve larger
Ta numbers. Details of the setup are given in [21]. Once again, four values of
7 have been investigated, but, due to experimental constraints, we have been
limited to investigate only smaller gap widths, 7.e. values n > 0.716, namely
n = 0.716, 0.769, 0.833, and 0.909. The experimentally explored parameter
spaces are shown in Fig. 7.3.

7.2 Numerical method

In this section, the numerical method used is explained in some detail. The
rotating frame in which the Navier-Stokes equations are solved and the em-
ployed non-dimensionalizations are introduced in the first subsection. This is
followed by detailing the spatial resolution checks that have been performed.

7.2.1 Code description

The employed code is a finite difference code, which solves the Navier-Stokes
equations in cylindrical coordinates. A second-order spatial discretization is
used, and the equations are advanced in time by a fractional time integration
method. This code is based on the so-called Verzicco code, whose numerical
algorithms are detailed in [159]. A combination of MPI and OpenMP directives
are used to achieve large-scale parallelization. This code has been extensively
used for Rayleigh-Bénard flow; for recent simulations see [160, 161]. In the
context of TC flow, [55] have already validated the code for n = 0.714.
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Figure 7.2: The control parameter phase space that was numerically explored
in this chapter in the (Ta, 1/Ro) representation. From top-left to bottom-
right: n = 0.5, 0.714, 0.833 and 0.909. Here I' = 27 was fixed, and axial
periodicity was employed. The grey shaded area signals boundary conditions
for which the angular momentum L = r%w of the outer cylinder (L,) is larger
than the angular momentum of the inner cylinder (L;). This causes the flow
to have an overall transport of angular momentum towards the inner cylinder.
In this region, the Rayleigh stability criterium applies, which states that if
dL?/dr > 0 the flow is linearly stable to axisymmetric perturbations.
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The flow was simulated in a rotating frame, which was chosen to rotate with
Q) = wye,. This was done in order to simplify the boundary conditions. In
that frame the outer cylinder is stationary for any value of a, while the inner
cylinder has an azimuthal velocity of ug(r = r;) = r(wf — w’), where the
superscripts £ denote variables in the lab frame, while no superscript denotes
variables in the rotating frame. We then choose the inner cylinder rotation
rate in the rotating frame as the characteristic velocity of the system U =
|ug(ri)| = 7ilw;—w,| and the characteristic length scale d to non-dimensionalize
the equations and boundary conditions.

Using this non-dimensionalization, the inner cylinder velocity boundary con-
dition simplifies to: dg(r = 7;) = sgn(w; — w,). In this chapter, w; — w, is
always positive. Thus, in this rotating frame the flow geometry is simplified
to a pure inner cylinder rotation with the boundary condition 4g(r;) = 1. The
outer cylinder’s effect on the flow is felt as a Coriolis force in this rotating
frame of reference. The Navier-Stokes equations then read:

~ ) R 1/2 R
2’; L4 Via=-—Vj+ <f<”)> V2i + Ro le, x 4, (7.3)

Ta
where Ro was defined previously in Eq. 7.2, and f(n) is

(L+m)°

o (7.4)

fln) =
It is useful to continue the non-dimensionalization by defining the normalized
radius 7 = (r — r;)/d and the normalized height Z = z/d. We define the time-
and azimuthally averaged velocity field as:

u(r,z) = (a(b,r,2,t))g4, (7.5)

where (¢(z1, T2, ..., Ty)), indicates averaging of the field ¢ with respect to ;.
To quantify the torque in the system, we first note that the angular velocity

current
T = r3((ue)o.p — vOr (o 2) (7.6)

is conserved, i.e. independent on the radius » (EGL 2007). Here J“ represents
the current of angular velocity from the inner cylinder to the outer cylinder
(or vice versa). The first term is the convective contribution to the transport,
while the second term is the diffusive contribution.

In the state with the lowest driving, and ignoring end plate effects, a laminar,
time independent velocity field which is purely azimuthal, ug(r) = Ar + B/r,
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with u, = u, = 0, is induced by the rotating cylinders. This laminar flow pro-
duces an angular velocity current Jg, which can be used to nondimensionalize
the angular velocity current,
JW

Nuw == 76'} (77)
Nu,, can be seen as an angular velocity ‘Nusselt’ number.
When J¥, and therefore Nu,, are calculated numerically, the values will depend
on the radial position, owing to finite time averaging. We can define A to
quantify this radial dependence as:

max(JY(r)) — min(J¥(r))  max(Nuy(r)) — min(Nuy(r))

8= =), - Ny (1) (78)

which analytically equals zero for infinite time but will deviate when calculated
numerically for finite time.

The convective dissipation per unit mass can be calculated from its definition
as a volume average of the local dissipation rate for an incompressible fluid,

— =Pt &+ 0u)?
fu= 6= g <(8Zu] + Jju;) >V’t, (7.9)

or a global balance can be used. The exact relationship (EGL 2007)

3

el — eﬂo = %U*ZTa(Nuw - 1), (7.10)
where €, is the volume averaged dissipation rate in the purely azimuthal
laminar flow, links the volume-averaged dissipation to the global driving Ta
and response Nu,.
This link can be and has been used for code validation and for checking spatial
resolution adequateness. The volume-averaged dissipation can be calculated
from both (7.9) and (7.10) and later checked for sufficient agreement. We
define the quantity A. as the relative difference between the two ways of
numerically calculating the dissipation, namely either via Nu, with eq. 7.10
or directly from the velocity gradients, eq. 7.9:

3d~ 1o ?Ta(Nuy, — 1) + €40 — % <(3iu§ + afuz‘)2>w
A, = . (711)
5 ((Ofu; +0w)?)

i
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A¢ is equal to 0 analytically, but will deviate when calculated numerically.
The deviation of Ay and A, from zero is an indication of the adequateness of
the resolution.

We would like to emphasize that the requirement for Ay < 0.01 is much stricter
than torque balance, which can simply be expressed as Nu,,(r;) = Nuy(r,). As
analyzed in [55], a value of less than 1% for A; and about 1% for A, is linked
to grid adequateness at the Taylor number simulated. To ensure convergence
in time, the time averages of the Nusselt number and the energy dissipation
calculated locally (equation 7.9) were also checked to converge in time within

1%.

7.2.2 Resolution checks

Spatial resolution checks were performed in two ways. First, as mentioned
previously, the values of Ay and A, were checked. As an additional check,
simulations at selected values of Ta were performed at a higher resolution. As
the explored parameter space is large, these checks were performed only for
the highest value of Ta simulated for the grid size. A lower driving of the
flow for the same grid size is expected to have a smaller error due to spatial
discretization, as spatial discretization errors increase with increased Re, and
thus increased Ta.

Concerning the temporal resolution there are numerical and physical con-
straints; the former requires a time step small enough to keep the integration
scheme stable and this is achieved by using an adaptive time step based on a
Courant-Frederich-Lewy (CFL) criterium. The third-order Runge-Kutta time-
marching algorithm allows for a CFL of up to v/3, but this can be reduced due
to the implicit factorization of the viscous terms. For safety, the maximum
CFL has been taken as 1.4. From the physical point of view, the time step
size must also be small enough to properly describe the fast dynamics of the
smallest flow scale which is the Kolmogorov scale. Although the time step size
should be determined by the most restrictive among the two criteria above,
our experience suggests that as long as the CFL number criterion is satis-
fied, which guarantees numerical stability, the results become insensitive to
the time step size and all the flow scales are adequately described temporally.
Direct confirmation of this statement can be found in [55].

The results for n = 0.5, 0.833, and 0.909 are presented in Table 7.1. Uniform
discretization was used in azimuthal and axial directions. In the radial direc-
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tion, points were clustered near the walls by using hyperbolic tangent-type
clustering, or a clipped Chebychev type clustering for higher values of Ta. A
table including the results for the spatial resolution tests at n = 0.714 can be
found in [55].

7.3 Experimental setup

The T3C apparatus has been built to obtain high Ta numbers. It has been
described in detail in [21] and [41]. The inner cylinder with outside radius r; =
0.200 m consists of three sections. The total height of those axially stacked
sections is L = 0.927 m. We measure the torque only on the middle section of
the inner cylinder, which has a height of L;,;;g = 0.536 m, to reduce the effect
of the torque losses at the end-plates in our measurements. This approach
has already been validated in [41]. The transparent outer cylinder is made of
acrylic and has an inside radius of r, = 0.2794 m. We vary the radius ratio by
reducing the diameter of the outer cylinder by adding a ‘filler’ that is fixed to
the outer cylinder and sits between the inner and the outer cylinder, effectively
reducing r, while keeping r; fixed. We have 3 fillers giving us 4 possible outer
radii: 7, = 0.279 m (without any filler), 0.26 m, 0.24 m, and 0.22 m, giving
experimental access to n = 0.716, 0.769, 0.833, and 0.909, respectively. Note
that by reducing the outer radius, we not only change 7, but also change
I'=L/(ro — ;) from I'(n = 0.716) = 11.68 to I'(n = 0.909) = 46.35.

For high Ta the heating up of the system becomes apparent and it has to
be actively cooled in order to keep the temperature constant. We cool the
working fluid (water) from the top and bottom end plates and maintain a
constant temperature within +0.5 K throught both the spatial extent and the
time run of the experiment. The setup has been constructed in such a way that
we can rotate both cylinders independently while keeping the setup cooled.
As said before, we measure the torque on the middle inner cylinder. We do this
by measuring the torque that is transferred from the axis to the cylinder by
using a load-cell that is inside the aforementioned cylinder. Torque measure-
ments are performed using a fixed procedure. The inner cylinder is spun up to
its maximum rotational frequency of 20 Hz and kept there for several minutes.
Then the system is brought to rest. The cylinders are then brought to their
initial rotational velocities (with the chosen 1/Ro), corresponding to a velocity
for which the torque is accurate enough; generally of order 2-3 Hz. We then
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100A, Case

1.11
0.89
0.92
0.31
1.07
1.06
1.12
1.98
1.56
0.88
0.76
0.29
0.61
1.16
1.05
1.26
2.92
2.29
0.91
0.17
0.49
0.21
3.15
2.07
1.02
1.06
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Table 7.1: Resolution tests for I' = 27 and n = 0.5, 0.833, and 0.909. The
columns display the radius ratio, the Taylor number, the resolution employed,
the calculated Nuy,, the relative discrepancies Ay and A, and finally the
‘case’: resolved (R) and error (E) reference. Here A, is positive, and exceeds
the 1% threshold reported in [55] for some cases at the largest 7, but even so
resolution appears to be sufficient as variations of Nu,, are small.
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slowly increase both velocities over 3 to 6 hours to their final velocities while
maintaining 1/Ro fixed during the entire experiment. During this velocity
ramp we continuously acquire the torque of this quasi-stationary state. The
calibration of the system is done in a similar way; first we apply the maximum
load on the system, going back to zero load, and then gradually adding weight
while recording the torque. These procedures ensure that hysteresis effects are
kept to a minimum, and that the system is always brought to the same state
before measuring. More details about the setup can be found in [21].

Local velocity measurements are done by laser Doppler anemometry (LDA).
We measure the azimuthal velocity component by focusing two beams in the
radial-azimuthal plane. We correct for curvature effects of the outer cylinder
by using a ray tracer, see [91]. The velocities are measured at midheight
(z = L/2) unless specified otherwise. For every measurement position we
measured long enough such as to have a statistically stationary result, for
which about 10° samples were required for every data point. This ensured a
statistical convergence of < 1%.

7.4 Global response: Torque

In this section, the global response of the TC system for the four simulated
radius ratios is presented. This is done by measuring the scaling law(s) of
the non-dimensional torque Nu,, as functions of Ta. The transition between
different types of local scaling laws in different Ta-ranges is investigated, and
related to previous simulations [55] and experiments [41].

7.4.1 Pureinner cylinder rotation

The global response of the system is quantified by Nu,. By definition, for
purely azimuthal laminar flow, Nu, = 1. Once the flow is driven stronger
than a certain critical Ta, large roll structures appear, which enhance angular
transport through a large scale wind.

Figure 7.4 shows the response of the system for increasing Ta in the case of
pure inner cylinder rotation for four values of 1. Experimental and numerical
results are shown in the same panels, covering different ranges, and thus com-
plementary, but consistent with, each other. Numerical results for n = 0.714
from [162] have been added to both panels.
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Figure 7.4: The global system response for pure inner cylinder rotation as
function of the driving Ta: The top panel shows Nu, — 1 vs Ta for both
simulations (points) and experiments (lines). Numerical data from [162] for
n = 0.714 have been added to these figures. The second panel shows the
compensated Nusselt versus Ta, with added lines with scaling laws Ta%2"
and Ta3 to guide the eye. The bottom two panels show a zoom-in of the
experimental data.
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As has already been noticed in [55] for n = 0.714, a change in the local scaling
law relating Ta to Nuy, occurs at around Ta ~ 3 - 10°. We can interpret these
changes in the same way as [55] and relate the transition in the Ta-Nu,, local
scaling law to the break up of coherent structures. A large jump in Nu,, can
be seen around Ta ~ 5 - 10® for n = 0.909, which corresponds to a change in
the number of rolls. The system goes from two pairs of rolls to three pairs of
rolls.

It is also worth mentioning that the exponent in the local scaling laws in the
regime before the transition depends on the radius ratio. This can be seen
in the compensated plot, and explains the curve crossings that we see in the
graphs.

For experiments (solid lines of figure 7.4), a different local scaling law can be
seen. In this case the experiments are performed at much higher T'a than
the simulations. The scaling Nu, ~ Ta%3® can be related to the so called
‘ultimate’ regime, a regime where the boundary layers have become completely
turbulent [2, 46, 89]. As indicated for the case at n = 0.714 we expect that
for increasing Ta also the simulations become turbulent enough to reach this
scaling law (cf. [162]). In this regime, the local scaling law relating Ta and
Nu,, has no dependence on 7 and thus is universal (apart from a different
prefactor).

In the experiments with large Ta, the value of 7 corresponding to the smallest
gap, i.e. 1 = 0.909, has the highest angular velocity transport (Nu,,) at a given
Ta. This can be phrased in terms of the pseudo-Prandtl-number o, introduced
in EGL2007. As a smaller gap means a smaller ¢, we thus find a decrease of
Nu,, with increasing o, for the drivings explored in experiments, similarly as
predicted [127] and found [163] for Nu(Pr) in RB convection for Pr > 1.

7.4.2 Rossby-number dependence

In this subsection, the effect of outer cylinder rotation on angular velocity
transport will be studied. Previous experimental and numerical work at
n = 0.714 [27, 26, 55, 164] revealed the existence of an optimum transport
where, for a given Ta, the transport of momentum is highest at a Rossby
number Rogplt7 which depends on Ta and saturates around Ta & 101°. In this
subsection, this work will be extended to the other values of 7.

Figures 7.5 and 7.6 show the results of the numerical exploration of the Ro™*

parameter space between Ta = 4 - 10* and Ta = 2.5 - 10”. The shape of
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Nu,, = Nuy, (Ro_l) curves and the position of Rogplt depends very strongly on

7 in the Ta range studied in numerics. For the largest gap (i.e., n = 0.5),
the optimum can be seen to be in the counter-rotating range (i.e., Ro~! <0)
as long as Ta is high enough. On the other hand, for the smallest gap (i.e.,
n = 0.909), the optimum is at co-rotation (i.e., Ro~! > 0) in the whole region
studied. The other values of studied 7 reveal an intermediate behavior. Opti-
mum transport is located for co-rotation at lower values of Ta and slowly moves
towards counter-rotation. For all values of 7, when the driving is increased,
Rogplt tends to shift to more negative values.

For two values of Ta (Ta = 4 - 105 and Ta = 107) for a radius ratio n = 0.5, two
distinct peaks can be seen in the Nu,,(Ro™!) curve. This can be understood
by looking at the flow topology. For Ro~! = 0, three distinct rolls can be seen.
However, when decreasing Ro™!, the rolls begin to break up. Someremnants of
large-scale structures can be seen, but these are weaker than in the Ro™! =0
case. Having a large-scale roll helps the transport of angular momentum,
leading to the peak in Nu,, at Ro~! = 0. Further increasing the driving causes
the rolls to also break up for Ro~! = 0, and eliminates the anomalous peak.
The shift seen in the numerics may or may not continue with increasing Ta.
The experiments conducted explore a parameter space of 1010 < Ta < 103
and thus serve to explore the shift at higher driving. Figure 7.7 presents the
obtained results. The left panel shows Nu,, versus Ta for all measurements.
The right panel shows the exponent ~, obtained by fitting a least-square linear
fit in the log-log plots. Across the 1 and Ro~! range studied, the average
exponent is v /= 0.39. This value is used in figure 7.8 to compensate Nu,. The
flat appearance of all data points reflects the good scaling and the universality
of this ultimate scaling behaviour Nu,, o< Ta%3?.

To determine the optimal rotation ratio for the experimental data, a Ta-
averaged compensated Nusselt (Nu,,/Ta%3%)r, was used. This is defined as:

1 Tamax
(Nu,, /Ta%3% g, = T /T Nu,,/Ta%3%dTa, (7.12)
max CcO Aco

where Tapay is the maximum value of Ta for every (1, Ro™!) dataset, and Tac,
is a cut-off Ta number used for the larger  (Tac, = 2 - 10! for = 0.833 and
Tac, = 3 - 100 for = 0.909) to exclude the initial part of the Nu,/Ta%3?
data points which seem to have a different scaling for some of the values of
Ro~! explored. For the smaller values of 77, Taco = Tamin, the minimum value
of Ta for every (n,Ro™!) dataset. An error bar on this average is estimated
as one standard deviation of the data from the computed average.
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Figure 7.5: Nuy, —1 versus Ro~ ! for = 0.5 and 1 = 0.714 studied numerically.
The shape of the curve and the position of the maximum depend very strongly
on both Ta and 7.
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Figure 7.6: Nuy, — 1 versus Ro~! for = 0.833 and 1 = 0.909 studied numeri-
cally. The shape of the curve and the position of the maximum depend very
strongly on both Ta and 7.
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Figure 7.7: The top panel shows Nu,, versus Ta for all values of n and Ro~!
studied in experiments. The bottom panel shows the exponent v of the scaling
law Nu,, o< Ta? for various Ro™!, obtained by a least-squares linear fit in log-
log space. The average value of ~ for each 7 is represented by the dashed lines,
while the solid line represents the average value of v = 0.39 for all n, which
will be used for compensating Nu,,.
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Figure 7.9 shows (Nuy,/Ta%3)1, as a function of Ro~! or alternatively of a for
the four values of ) considered in experiments. The increased driving changes
the characteristics of the flow. This is reflected in the very different shapes of
the Ro~!-dependence of Nu,, when comparing figures 7.5 and 7.6 and 7.9, and

in the shift of Rogplt.

To summarize these effects, figure 7.10 presents both the 95% peak width

ARo, !, and the position of optimal transport Rogr}t determined as the real-

ization with the maximum torque as a function of Ta and 7 obtained from
numerics as well as the asymptotic value from experiments. The peak width
ARo ! is defined as:

max

Roael)s 1 1
/ Nuy,(Ro™)dRo™
ARO_l _ RO:(I).95

max max(Nu, — 1)

(7.13)

where Ro_§ o5 and Rog g5 are the values of Ro~! for which Nu, is 95% of the
peak value.

The 95% peak width can be seen to vary with driving, reflecting what is seen
in figures 7.5 and 7.6. The shape of the Ro™'-Nu,, curve is highly dependent of

both n and Ta. Ro(:plt shows a very large variation across the Ta range studied

in numerics. The shift of the Roofplt with Ta is expected to continue until it

reaches the values found in the experiments. This can be seen in figures 7.5
and 7.6 for n = 0.5 to n = 0.833. For n = 0.909 , the trend seems to change
for the last point. However, this is due to the very large and flat peak of the
Nug, (Ro™1) curve—this can also be seen in the left panel and in figure 7.6b.
One may also ask the question: has the value of Rogplt already saturated in our
experiments? Figure 7.8 shows the trend for Nu,, for increasing Ta. This trend
does not seem to vary much for different values of Ro~!. Therefore, we expect
the value of Rogplt to have already reached saturation in our experiments.

We can compare these new experimental results to the available results from
the literature, the speculation made in [41] and the prediction made in [164] for
the dependence of the saturated aqpy on 7. This is shown in figure 7.11. Error
bars are either taken from the literature, or computed by fitting a quadratic
polynomial to Nuy,(a) for three values of a below the maximum, i.e. a < aopt,
three values of a after the maximum, i.e. a > aopt and the six values of a,
and comparing the different results obtained. Both dependencies are shown
to deviate substantially from the experimental results obtained in the present
work. Even if the speculation from [41] appears to be better for this n-range,
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Figure 7.9: The panels show (Nu,/Ta%3)1, versus either Ro™! (top) or a
(bottom) at the cut-off region highlighted in figure 7.8 for the values of 7
studied experimentally. Zoom-in around the optimum have been added for
clarity. Error bars indicate one standard deviation from the mean value, and
are too small to be seen for most data points. There is a strong n-dependence
of the curve Nu,,/Ta%3" versus Ro™!, even at the largest drivings studied in
experiments. Optimal transport is located at Rogplt = —0.20 for n = 0.714,
Rogy; = —0.15 for n = 0.769, Ro,; = —0.10 for n = 0.833 and Ro,, = —0.05
for n = 0.909, corresponding to a =~ 0.33 — 0.35 for all values of 1. In the
bottom panel, the maximum of the graph is less pronounced, i.e. it becomes

more flat with increasing 7.
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Figure 7.10: Left: The 95% peak width ARoyl  vs Ta for the four values of 7

analyzed in numerics. The peak width can be seen to vary with driving, and
for smaller gaps is larger for larger values of Ta. Right: Rogplt vs Ta for the
same four values of 7. The location of the optimal transport has a very strong
dependence on the driving, especially for the largest values of 1. As driving
increases beyond the numerically studied range and overlaps with experiments,
Rogplt should tend to the experimentally found values, represented as dashed
lines in the figure. The asymptote for n = 0.5 is obtained from [165]. The
trend appears to be less clear for n = 0.909, but this might be understandable
from the peak width at the highest driving Ta.

for previous experimental data at 7 = 0.5, it is clearly different from the
experimentally measured value for optimal transport by [165].

This section has shown that the radius ratio has a very strong effect on the
global response and especially on optimal transport. Significantly increased
transport for co-rotation has been found at the lowest drivings based on the
DNS results. This finding was already reported in [55] for n = 0.714, but the
transport increase was marginal. For n = 0.833 and especially for n = 0.909
the transport can be increased up to three times. The shift of Rogplt has also
been seen to be much bigger and to happen in a much slower way for smaller
gaps. The reason for this will be studied in Section 7.5, using the local data

obtained from experiments and numerics.
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Figure 7.11: Data for aopt(n), from both experiments [14, 27, 165] and numerics
[164]. The speculation of [41] and the prediction of [164] are plotted as lines
on the graph. The new experimental results deviate substantially from both
predictions, even when taking into account error bars.

7.5 Local results

In this section, the local angular velocity profiles will be analyzed. Angular ve-
locity is the transported quantity in TC flow and shows the interplay between
the bulk, where the transport is convection-dominated, and the boundary lay-
ers, where the transport is diffusion-dominated. Numerical velocity profiles
and experimental profiles obtained from LDA will be shown. The angular
velocity gradient in the bulk will be analyzed and connected to the optimal
transport. In addition, the boundary layers will be analyzed and compared to
the results from the analytical formula from EGL 2007 for the BL thickness
ratio in the non-ultimate regime.

7.5.1 Angular velocity profiles

Angular velocity w profiles obtained from numerics are shown in figure 7.12.
Results are presented for four values of 1 and selected values of Ro™! at Ta =
2.5 - 107 (and Ta = 2.39 - 107 for n = 0.714). Experimental data obtained
by using LDA are shown in figure 7.13 for three values of n: from top-left to
bottom, n = 0.714 for Re; — Re, = 10%, n = 0.833 for Ta = 5 - 10!, and
n = 0.909 for Ta = 1.1 - 10!
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Figure 7.12: Azimuthally, axially and temporally averaged angular velocity
(W), versus radius 7 for: n = 0.5, n = 0.714, n = 0.833, and n = 0.909. Data
is for Ta = 2.5 - 107 (Ta = 2.39 - 107 for n = 0.714) and selected values of
Ro~!. For smaller 7, the w-bulk profiles differ more from a straight line, and
have, on average, a smaller value.

The different radius ratios affect the angular velocity profiles on both boundary
layers, as the two boundary layers are more asymmetric for the wide gaps;
and they affect the bulk, as the bulk angular velocity is smaller for wide gaps.
These effects will be analyzed in the next sections.

7.5.2 Angular velocity profiles in the bulk

We now analyze the properties of the angular velocity profiles in the bulk. We
find that the slope of the profiles in the bulk is controlled mainly by Ro~! and
less so by Ta. This can be understood as follows: The Taylor number Ta acts
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Figure 7.13: Angular velocity profiles obtained by LDA for n = 0.714 at either
Re; — Re, = 10° (top), n = 0.833 or at Ta = 5 - 10'! (bottom-left) and
n=0.909 at Ta = 1.1 - 10*! (bottom-right), to explore different dependencies
in parameter space. Data is taken at a fixed axial height (i.e. the cylinder
mid-height, z = L/2), but as the Taylor number Ta is much larger than in the
numerics, the axial dependence is weaker.
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Figure 7.14: An example of the two fitting procedures for the bulk angular
velocity gradient and for boundary layer thicknesses done on the DNS data.
Both panels show the 6,z, and t averaged azimuthal velocity and angular
velocity for n = 0.5, Ta = 107, and pure inner cylinder rotation. In the left
panel a line is fitted to the bulk of the angular velocity to obtain the bulk
gradient. The dashed lines indicate the EGL approximation. The right panel
shows the three-lines-fit to the whole profile to obtain the width of its boundary
layers, used in Section 7.5.3. Both bulk fits are done at the inflection point,
but for different variables (w or wgy), which gives slightly different slopes (and
intersection points).

through the viscous term, dominant in the boundary layers, while Ro™! acts
through the Coriolis force, present in the whole domain. These results extend
the finding from [55] to other values of 7.

To further quantify the effect of Ro~! on the bulk profiles, we calculate the
gradient of (w),. For the DNS data, this is done by numerically fitting a
tangent line to the profile at the inflection point using the two neighboring
points on both sides (at a distance of 0.01 — 0.02 r-units); such fit is shown in
figure 7.14.

As the spatial resolution of the LDA data is more limited, the fit is done
differently. A linear regression to the w-profile between 0.2 < 7 < 0.8 is
carried out. The larger range of 7 is chosen in experiments because: (i) the
boundary layers are small enough due to the high Ta that they are outside
of the fitting range, and (ii) the fluctuations of the data are much higher
in experiments, especially for the LDA of the narrow gaps (n = 0.833 and
n = 0.909). From this regression, we calculate (W), and an error taken from
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the covariance matrix of the fit.

Figure 7.15 shows four panels, each containing the angular velocity gradient
in the bulk from the numerical simulations and experiments for a given value
of . We first notice that the angular velocity gradients from experiment
and numerics are in excellent agreement. Next the connection between a flat
angular velocity profile and optimal transport for the highest drivings explored
in the experiments can now be seen for other values of 1 and not just for
n = 0.714 as reported previously [26]. Once Ro~! < Rogplt, the large scale
balance analyzed in [55] breaks down, and a ‘neutral’ surface that reduces the
transport appears in the flow.

In simulations, because of resolution requirements, we are unable of driving
the flow strongly enough to see a totally flat bulk profile. Also, the influence
of the large scale structures causes a small discrepancy between the flattest
profile and the value of Rogplt measured from Nu,,. This is expected to slowly
dissapear with increasing Ta.

In [55], a linear extrapolation of the bulk angular velocity gradient was done
to give an estimate for the case when this profile would become horizontal,
i.e., d{w),/dr = 0, and thus give an estimate of Rogplt. For n = 0.714 this
estimate agreed with the numerical result within error bars. Here, we extend
this analysis for the other values of 1 and, as we shall see, successfully.

As in [55], an almost linear relationship between Ro~! and d(w)./di can
be seen. This linear relationship is extrapolated and plotted in each panel.
This extrapolation gives an estimate for Rogplt(Ta — 00), which we can com-
pare to the experimentally determined Rogplt(Ta — 00). For n = 0.833,
Ro }(Ta — o0) ~ —0.12 corresponding to a ~ 0.38 is obtained, and for
n = 0.909, Ro~!(Ta — co0) =~ —0.05, corresponding to a ~ 0.31 is obtained.

These values are (within error bars) also obtained for Rogplt at the large Ta
-1

investigated in experiments, namely Ro, = —0.10 and —0.05, respectively.

For n = 0.5, Ro;plt(Ta — 00) &~ —0.33 is obtained, corresponding to a ~ 0.2.
This value is consistent with the numerical results in [164], which report aopt ~
0.2. However, care must be taken, as fitting straight lines to the w-profiles gives
higher residuals for 7 = 0.5 as the profiles deviate from straight lines (cf. top-
left panel of figure 7.12). A fit to the ‘quarter-Couette’ profile derived from
upper bound theory [140] is much more appropriate for n = 0.5 at the strongest
drivings achieved in experiments [165]. This is because the flow feels much
more the effect of the curvature at the small 7. At the other end of the scale,
the linear relationship works best for smallest gaps, i.e. n = 0.909 (conform

figure 7.12) where curvature plays a small effect. To further elaborate the link
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Figure 7.15: Bulk angular velocity gradient d{(w),/dF against Ro" for the four
values of 7 explored in simulations, n = 0.5 (top left), n = 0.714 (top right),
n = 0.833 (middle), and n = 0.909 (bottom). Data from experiments obtained
by LDA is also plotted for the three values of 7 for which it was experimentally
measured (green circles). For all values of n except n = 0.5, for co-rotation
and slight counter-rotation there is once again an almost linear relationship
between Ro~! and d(@)./dF. A black straight line is added to extrapolate

this relationship in order to estimate Rogplt. A plateau, in which the radial

gradient of (w), is small can be seen around optimal transport, indicating a
large convective transport of angular velocity.



7.5. LOCAL RESULTS

139

O ._~| T e 1) = 0.714
o }" 2 =0833
-0.2F © L 00 ' B ¢ 1 =0.909
= ° R = 7 =0.95 (Wendt)
S—O ar A i- ° 1 O A1)
= e ° ; o Mt T,
06 ¢ ¥ Jo1f * ¥
t - I
08355 0.5 17282 o1 0

1/Ro

Figure 7.16: Bulk angular velocity gradient d(@),/di against Ro~! for the
three values of 1 explored in experiments, and for n = 0.95 (digitized from
[14]). The error bars of Wendt’s data are larger due to the quality of the dig-
itization. As seen previously, the flattest profile occurs around weak counter-
rotation, for all values of n including n = 0.95.

between 7, flat w-profiles and Ro~!, data for the smallest gap n = 0.95 from
[14] has been digitized, and d(w),/d7 was been determined for it. This data
corresponds to a driving of Ta ~ 10%-10°. Figure 7.16 shows d(@),/dF against
Ro~! for Wendt’s data and also for the current experimental data. The flattest
profile can be seen to occur for increasing (in absolute value) Ro~! for larger
gaps, simular to the shift of Ro~!. For n = 0.95, almost no curvature is felt by
the flow and a flat profiles can be seen for —0.05 < Ro~! < 0. However, adding
a Coriolis force (in the form of Ro™!) a large w-gradient is sustained in the
bulk. This corroborates the balance between Ro™! and the bulk w-gradients
proposed in [55].

7.5.3 Angular velocity profiles in the boundary layers in the classical turbulent
regime

As the driving is increased, the transport is enhanced. To accommodate this,
the boundary layers (BLs) become thinner and therefore the w slopes (0,w)
become steeper. Owing to the geometry of the TC system an intrinsic asym-
metry in the BL layer widths is present. More precisely, the exact relationship
Or(w)|o = n30,-(w)]; holds for the slopes of the boundary layers, due to the r
independence of J¥, conform EGL 2007 and eq.(7.6).
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An analysis of the boundary layers was not possible in the present experiments
because the present LDA measurements have insufficient spatial resolution to
resolve the flow in the near-wall region. Therefore, only DNS results will be
analyzed here. In simulations the driving is not as large as in experiments,
and as a consequence the shear in the BLs is expected to not be large enough
to cause a shear instability. This means that the BLs are expected to be of
Prandtl-Blasius (i.e. laminar) type, even if the bulk is turbulent. On the other
hand, in the experiments both boundary layers and bulk are turbulent, i.e.
the system is in the ‘ultimate regime’.

Using the DNS data, we can compare the ratio of the numerically obtained
boundary layer widths with the analytical formula for this ratio obtained by
EGL 2007 for laminar boundary layers, namely:

Ny _ -3 1wo — Wk

Lo _ , 7.14
Al |wi — Whulk| (7.14)

where the value of wyyk is some appropriate value in between for which the
angular velocity at the inflection point of the profile might be chosen, i.e. the
point at which the linear bulk profile fit was done to obtain A% and \,,. The
value wpyk is taken from the numerics, and may bias the estimate.

To calculate the boundary layer thicknesses, the profile of the mean azimuthal
velocity (ug), is approximated by three straight lines, one for each boundary
layer and one for the bulk. For the boundary layers the slope of the fit is
calculated by fitting (by least-mean-squares) a line through the first two com-
putational grid points. For the bulk, first the line is forced to pass through
the grid point which is numerically closest to the inflection point of the profile.
Then its slope is taken from a least mean square fit using two grid points on
both sides of this inflection point. The respective boundary layer line will cross
with this bulk line at a point that then defines the thickness of that boundary
layer.

The results obtained for A% /A{, both from equation 7.14 and directly from
the simulations is shown in figure 7.15. Results are presented for the four
values of 1 and only for the highest value of T'a achieved in the simulations.
The boundary layer asymmetry for counter-rotating cylinders (i.e., Ro~! < 0)
grows with larger gaps. This is to be expected, as the 73 term is much
larger (8) for the largest gap as compared to the smallest gap (= 1.3). This is
consistent with the n and thus ¢ restriction in EGL 2007 to a range of smaller
gap widths.

As noted already in [55] we find that the fit is not satisfactory for co-rotation
(i.e. Ro~! > 0) at the lowest values of 7, but is satisfactory for counter-
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rotation (i.e. Ro~! < 0). In EGL 2007, equation (7.14) is obtained by ap-
proximating the profile by three straight lines, two for the BLs and a constant
w line for the bulk. Therefore, we expect the approximation to hold best
when the bulk has a flat gradient. For co-rotating cylinders and strongly
counter-rotating cylinders, the bulk has a steep gradient (see figure 7.15), but
characteristically different shapes. The only free parameter in equation (7.14)
iS Whuik, which is chosen to be w at the point of inflection. Owing to the differ-
ent shapes of the w-profiles, this choice seems more correct for counter-rotating
cylinders, as there is a clear inflection point in the profile. On the other hand,
for co-rotating cylinders, the profile appears to be more convex-like, and there,
the choice of wyyk as the inflection point induces errors in the approximation
(conform 7.14a). For n = 0.5, the error from the constant w approximation is
even more pronounced, and the formula fails.

For co-rotation the boundary layers are approximately of the same size, and the
ratio A% /Al is very close to 1. If one inverts equation (7.14) by approximating
this ratio by 1, an estimate of what the angular velocity will be in the bulk
due to the boundary layer slope asymmetry is obtained:

3
Whulk = 9773 e (7.15)
corresponding to:
14 3,0
¢ —Wy, + N°w;
Whulk — f_|_ 7]3 : ) (716)

in the lab frame. This expression gives an estimate for wp,x when the profile
is flattest, and has been represented graphically in figure 7.12. Indeed, one
can take this estimate (e.g. 0.27 for n = 0.714) and compare it with figures
7.12 and 7.13. We note that the value of w in the bulk for the flattest profile
in the numerics (at Ro™! ~ Rogplt(Ta)) lies around wpyk. We can also note
that the profiles for Ro~! > Rogplt approximately cross each other at the same
point, and this point has a value of w = wpy. This effect can only be seen in
the numerics, as these approximations break down once the boundary layers
become turbulent. The cross points of the curves are taken as an estimate for
Whulk, and this is represented against eq. 7.15 in figure 7.18.

To understand why the boundary layers are of approximately the same thick-
ness despite the different initial slopes at the cylinders one has to go back to
equation (7.6). The angular velocity current has a diffusive part and a convec-
tive part. Per definition in the boundary layer the diffusion dominates and in
the bulk the convection does. Thus the boundary layer ceases when convec-
tion becomes significant. But convection is controlled by the wind. Thus in
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Figure 7.17: A2 /Al from simulations (dots) and from equation (7.14) (solid
lines) versus Ro~! for the four values of 7 studied numerically, n = 0.5
(top-left), 0.714 (top-right), 0.833 (bottom-left) and 0.909 (bottom-right) at
Ta = 2.5 - 107. The numerical results and the estimate from equation (7.14)
match very well for larger values of 77 and especially for counter-rotating cylin-
ders (1/Ro < 0). The vertical black dashed line indicates Rogplt, while the
vertical dash-dot line indicates the 90% peak width on the counter-rotation
side. A%/ begins to deviate from 1 between the two lines. The asymmetry
between the boundary layers can be seen to be larger for smaller values of 7,

which is expected as equation (7.14) contains the explicit factor n73.
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Figure 7.18: Plot of wpuk as a function of 7, taken from both eq. 7.15 and
from the crossing points of the w-profiles in figure 7.12. The trend is the same
in both data sets. A smaller value of n decreases the value of the bulk angular
velocity.

essence the boundary layer size is controlled by the wind and not immediately
by the initial slope at the wall. Owing to continuity, if the rolls penetrate the
whole domain the wind may be expected to be the same close to the inner
and close to the outer cylinder. This suggests that the flow organizes itself in
a way that the boundary layer extensions (or widths) might be similar, even
if the initial slopes at the walls are different.

What happens for counter-rotation, or more precisely when Ro™! < Rogplt?
For Ro~! below the optimum Rogplt a so-called neutral surface will be present
in the flow, which separates the Rayleigh-stable and -unstable areas. The wind
drastically changes in the Rayleigh-stable areas [55], leading to very different
wind velocities close to the outer and inner cylinder, respectively. The wind
at the outer cylinder will be weaker, as the rolls cannot fully penetrate the
Rayleigh-stable domain. This means that the outer cylinder boundary layer

will extend deeper into the flow, in accordance to what is seen in figure 7.17.
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7.6 Summary and conclusions

Experiments and direct numerical simulations (DNS) were analysed to explore
the effects of the radius ratio n on turbulent Taylor-Couette flow. Numerical
results corresponding to Taylor numbers in the range of 10* < Ta < 108
alongside with experiments in a Taylor number range of 10° < Ta < 102
were presented for four values of the radius ratio 7.

First the influence of the radius ratio on the global scaling laws Nu,, oc Ta” was
studied. The local scaling exponent v describing the response of the torque
caused by a Taylor number increase, is barely modified by varying the radius
ratio n. Indeed, in experiments a universal exponent of v = 0.39 is obtained,
independent of radius ratio and outer cylinder rotation. For the numerical sim-
ulations at lower Ta similar universal behavior can be observed. The transition
associated to the vanishing of coherent structures can also be appreciated at
Ta ~ 106 for all values of 1. Before this transition local exponents of v ~ 0.33
are seen and after the transition these decrease to v = 0.2.

The radius ratio does play a very important role in optimal transport. At
smaller gaps, i.e., for larger n, at the lower end of the Ta range a very large
increase in transport for corotating cylinders can be seen. The shift towards
the asymptotic optimal transport happens in a much slower way for small
gaps, but this shift is seen for all studied radius ratios. For the largest gap
(n = 0.5), optimal transport for pure inner cylinder rotation at the lowest
drivings is obtained. The shift towards the asymptotic value happens suddenly,
as two peaks can be seen in the Nu,, versus Ro~! curve, and one of the peaks
becomes larger than the other one as driving increases. This might point
in the direction of different phenomena and transitions in the flow topology
happening at larger gaps. Finally, the asymptotic values of Rogplt obtained
in experiments were compared to the speculation of [41] and the prediction
of [164]. Both of the models were found to deviate from experimental and
numerical results.

When looking at the local results, as in [55] we can link the optimal transport in
the smallest gaps to a balance between Coriolis forces and the inertia terms in
the equations of motion. The flattest profiles in the bulk are linked to optimal
transport in experiments. With the numerics the extrapolation presented
in [55] for predicting optimal transport was extended to other radius ratios.
It is found to work well for all selected n except for n = 0.5. At this 7,
i.e., for the largest gap considered here, the most obvious problem is that



Radius ratio () Extrapolated Rogplt /aopt Measured Rogplt /Gopt

0.5 -0.33/0.20 —
0.714 -0.20/0.33 -0.20/0.33
0.769 — -0.20/0.36
0.833 -0.12/0.41 -0.10/0.37
0.909 -0.05/0.34 -0.05/0.34

Table 7.2: Summary of values obtained for Rogplt and aepy through both the
extrapolation of d(w),/dF (Section 7.5.2) and direct measurement of the torque
(Section 7.4.2) for the various values of 7 studied in this chapter.

the w profiles strongly feel the effect of curvature difference at the inner and
outer cylinders and a straight line fit (i.e. w = constant) to the bulk is not
appropriate. There may be additional reasons for this discrepancy and optimal
transport in large gap TC flow requires more investigation. A summary of the
results for determining Rogplt using both the experimentally measured torque
maxima from section 7.4.2 and the numerical extrapolation from section 7.5.2
are presented in table 7.2.

Finally, the boundary layers have been analyzed. The outer boundary layer is
found to be much thicker than the inner boundary layer when Ro™! < Rogplt.
We attribute this to the appearance of Rayleigh-stable zones in the flow. This
prevents the turbulent Taylor vortices from covering the full domain between
the cylinders. As the boundary layer size is essentially determined by the wind,
if the rolls penetrate the whole domain (which is the case for Ro~! > Rogplt),
both boundary layers are approximately of the same size. If the rolls do not
penetrate the full domain, the outer boundary layer will be much larger than
the inner boundary layer, in accordance with the smaller initial slope of w(r)
at the cylinder walls.

In this work, simulations and experiments have been performed on a range
of radius ratios between 0.5 < 1 < 0.909. Insights for the small gaps seem
to be consistent with what was discussed in [55]. However, for n = 0.5 the
phenomena of optimal transport appears to be quite different. Therefore, our
ambition is to extend the DNS towards values of 1 smaller than 0.5 to improve
the understanding of that regime.






Laser Doppler anemometry inside
Taylor-Couette®

In this chapter it will be shown how the curvature of the outer cylinder affects
laser Doppler anemometry measurements inside a Taylor-Couette apparatus. The
measurement position and the measured velocity are altered by curved surfaces.
Conventional methods for curvature correction are not applicable to our setup,
and it will be shown how a ray-tracer can be used to solve this complication.
By using a ray-tracer the focal position can be calculated, and the velocity can
be corrected. The results of the ray-tracer are verified by measuring an a priori
known velocity field, and after applying refractive corrections good agreement
with theoretical predictions are found. The methods described in this chapter
are applied to measure the azimuthal velocity profiles in high Reynolds number
Taylor-Couette flow for the case of outer cylinder rotation.

°Published as: Sander G. Huisman, Dennis P.M. van Gils, and Chao Sun, Applying laser
Doppler anemometry inside a Taylor-Couette geometry: using a ray-tracer to correct for curvature
effects, Eur. J. Mech. - B/Fluids 36, 47 (2012). Theory, experiments, analysis, and writing done
by Huisman under supervision of Sun. Discussion of the results and proofreading are done by
everyone.
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8.1 Introduction

A Taylor-Couette (TC) apparatus consists of two coaxial, differentially rotat-
ing, cylinders, see figure 8.1. The annulus between the cylinders is filled with
a working fluid; most commonly, as in our case, water is chosen. The appa-
ratus has been used to study hydrodynamic instabilities, pattern formation,
turbulence, and was found to have a rich phase diagram with different types
of flow structures [166, 94, 19, 107, 18, 121, 108, 109, 8, 110, 17]. To get a
deep understanding of these phenomena it is crucial to measure the local flow
velocity.

re

Figure 8.1: Left: Top view of TC apparatus, two concentric cylinders are
rotating. Control parameters are the rotation rates w; and w,, where the
subscripts denote inner cylinder and outer cylinder, respectively. The inner
cylinder has a radius of r; = 20 cm, and the outer cylinder has an inner-
radius of r, = 28 cm. Right: Vertical cross section of a TC apparatus. The
outer cylinder has an outer-radius of r. = 30.5 cm and a height L = 92.7 cm.
The outer cylinder is made from optically transparent PMMA (Poly-(methyl
methacrylate)), and is attached to the top and bottom end plates.

Measuring the velocity field inside a TC apparatus was done for a long time
using intrusive measurements techniques, e.g. constant temperature anemom-
etry [30, 31, 167, 10] and Pitot tubes [14]. Though these techniques are robust
and proven to work, they are not ideal for measuring the velocity in TC flow.
The aforementioned methods measure the magnitude of the velocity, not the
individual components, and are directionally ambiguous using a single probe.
Of course, one could use multiple probes [168] to obtain the flow direction.
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Another problem is that they alter the flow under consideration. Though this
is not an issue for non-recirculating setups, like an open-ended wind tunnel,
it can be a severe issue in recirculating (closed) setups, e.g. a TC apparatus,
a rotating drum, or a Rayleigh-Bénard cell [6]. For a large range of Reynolds
numbers it is known that vortices will be shed [169] from these probes, either
in the form of a Karman vortex street or as a turbulent wake, depending on the
geometry and Reynolds number. These vortices can survive a full revolution,
which has been observed in rotating drum experiments [170].

The TC setup used in this chapter, the Twente Turbulent Taylor-Couette
(T3C) [21], distincts itself from other setups by many features: variable gap
and radius ratio, precise temperature control, independently rotatable cylin-
ders, and a fully optically accessible gap. The outer cylinder is constructed
from 2.5 cm thick PMMA (Poly-(methyl methacrylate)), which enables optical
measurement techniques, e.g. Particle Tracking Velocimetry (PTV) [171, 172],
Particle Imaging Velocimetry (PIV) [173, 15], and Laser Doppler Anemometry
(LDA) [174, 175]. These methods, by their very nature, will not disturb the
flow under consideration. In addition these techniques are able to measure
the velocity components and are directionally sensitive, such that they are ca-
pable of detecting flow reversals. The addition of seed particles is imperative
for these techniques, and one should check if these particles accurately reflect
the velocity of the flow, as discussed below. Additionally, particles should
not change the dynamics of the flow, in particular, some particles act as a
surfactant in two-phase flows [176, 177, 178].

8.2 Laser Doppler anemometry

LDA is based on the Doppler effect. The most common version of LDA, is a
so-called dual beam heterodyne configuration [175], see figures 8.2 and 8.3. In
this configuration two beams are crossed and focused in the flow, creating an
interference pattern. Seed particles, added to the flow, passing through the
interference pattern will scatter light with a specific frequency. This light is
then captured by a photo detector and converted to a current from which the
Doppler shift can be calculated. Knowing the optical geometry of the setup
one can directly calculate the velocity from the Doppler shift [175]:

_ 2sin(0/2)

fa vk (8.1)
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where fy is the Doppler shift, A the wavelength of the laser, # the angle between
the beams, and v the component of the velocity along ki — ko, where k; are
the propagation vectors of the laser beams. To add directional sensitivity one
has to frequency shift one of the beams, accomplished by a Bragg cell. More
details about the Bragg cell, the fringe-model, and LDA in general, can be
found in e.g. refs. [175, 179].

Laser Doppler anemometry is a so-called absolute measurement method and
therefore does not require calibration against a known flow. This, however,
does not mean that a measurement of velocity is error free. Any misalignment
in the optical arrangement, and any imperfection in the lenses (e.g. astig-
matism [180]) will cause errors. In addition, any particle traveling through
the beams prior to focussing can have adverse effects on the formation of a
well-defined measurement volume. Similarly, any spatial inhomogeneity of
the refractive index causes the focal point to shift, and the waists to mismatch
in the measurement volume [181]. Furthermore, the number of particles in
the interference zone fluctuates; particles move in and out the measurement
volume and induce noise in the collected signal.

Figure 8.2: Left: The azimuthal and axial components of the velocity are
measured, laser beams are in the green and blue planes respectively. Right:
Vertical cross section showing two laser beams. The dashed lines are beams
without refraction, the angle between the beams is denoted 6,, where a stands
for air. The solid lines are beams with refraction, 6,, is the angle between the
beams in water. rpy is the position of the laser head and rpip — f is position
of the focus without refraction, while r is the real position of the focus.
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8.2.1 Curvature effects

In most LDA applications the laser beams travel through flat surfaces, see
figure 8.3. In this case, Eq. 8.1 can be simplified by invoking Snell’s law:

fa  sin(0y/2)  sin(f./2)
2”[%’ N )\W N )\a

(8.2)

where quantities with a subscripts denote quantities in air, and w in water.
Equation 8.2 is only applicable if the interfaces are flat and the optical axis
is perpendicular to those interfaces; it is only then that 6,/2 is the angle of
incidence and 6y,/2 the angle of refraction. The difference in refractive index
is absorbed by the changing wavelength. So for the case of flat interfaces, 6,
can be obtained from the focal length and the beam separation, and together
with \,, given by the laser, the velocity can be calculated from the Doppler
shift (Eq. 8.2). Note that the refractive indices of the container and water are
irrelevant; they are not used in the calculation of the velocity.

11

Figure 8.3: Left: Typical geometry of LDA, equivalent to the vertical plane in
the current application. The beams are passing through flat interfaces, and 6
does not vary with laser-head position. Right: Horizontal plane: laser beams
are affected by the curved interfaces, and therefore 6 is a function of radial
position.

For the case of a curved surface, see Fig. 8.3, Eq. 8.2 does not hold. For this
case Snell’s law can not (easily) be applied in order to transform 6,, to 6,. A
prerequisite of calculating the correct velocity is therefore the knowledge of 6.,
as a function of gap-position.

Most commonly the calculation of the velocity is implemented in the supplied
software and implicitly assumes Eq. 8.2 to hold. For the case of curved
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interfaces this equation does not hold, and therefore the measured velocity
has to be corrected by multiplying it with a correction factor Cpy:

rea a i 9(1 2
Cy = Upreal M sin(f0,/2) (8.3)

U, measured Ty Sin(@w/Q) ’

where a subscripts denote quantities in air, and w in water; see also Fig. 8.2.

8.3 Solutions

The problem at hand is predominantly solved by mounting prisms (see e.g.
[182]) to the outer cylinder of the TC apparatus, or by putting the entire
apparatus inside a liquid bath (see e.g. [183]) with flat windows. The latter
has two purposes: the liquid bath can act as a coolant and match the refractive
index of the working fluid. In this way the beams travel through the outer
cylinder with less deflection; this solution is, however, not perfect because of
the finite thickness of the outer cylinder. Matching the refractive indices of
the working fluid, the liquid bath, and the outer cylinder does solve the issue,
but becomes cumbersome for large scale devices, or impossible if the studied
fluid is a gas. The use of prisms is tantamount to the use of a liquid bath,
and is also unable to fully correct for the problem. Furthermore, applying
prisms is technically demanding once the outside is in motion. Theoretically
one can derive the trajectories of the laser light. Ref. [184] derives these
trajectories and even finds simplifications for the solutions found. This analysis
is, however, not complete, as it only considers 1 plane of refraction; the inside
of the outer cylinder. In our application our cylinder is very thick compared
to our measurement range; the gap of our apparatus is 8 cm versus a cylinder
of thickness 2.5 cm. Here we will consider both interfaces, and calculate the
trajectories by using a ray-tracer, and we will show that taking into account
both interfaces is crucial for our experiments. Utilizing a ray-tracer has several
advantages compared to a theoretical derivation for the present experimental
setup (e.g. Ref. [184]): a theoretical derivation becomes cumbersome if one
tries to find a formula after more than one refraction. The T?C system will
be equipped with multiple outer cylinders to alter the gap-width, a ray-tracer
is then more generalized and is able to handle multiple interfaces. The next
section describes the use of a ray-tracer in order to account for the effects of
the curved interfaces.
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8.4 Ray-tracer

A 3D ray-tracer is built in order to calculate two parameters: the angle 6, for
the green beam pair in the horizontal plane, and the position of the crossings of
the blue and green beam pairs in the vertical and horizontal plane, respectively.
For the blue beam pair (in the axial-radial plane), the curvature effects does
not affect the flow velocity measurements, and therefore Eq. 8.2 is applicable;
the axial velocity does not require correction. The azimuthal velocity, however,
does need correction.

The ray-tracer is based on simple principles: starting at point p; with direction
k;, it checks which interfaces are hit for some ¢t > 0 at position p; + tk;. The
next point in the ray-trace can be defined from the interface that is hit first:
Pi+1 = Pi +tmink;. The normal of this interface is calculated at position p;41,
and is denoted 8, where the hat means the vector has unit length. For the
case of reflection the new direction is given by

kiy1 = ki — 2(k; - S)S. (8.4)
For the case of refraction, Snell’s law:
nz(ﬁl X §) = ni+1(Ei+1 X /S\), (85)

is solved for kjyq under the constraint that it has unit length and in the
plane spanned by 8§ and l/{\l This can be implemented without the use of
trigonometric functions, which can be troublesome in certain fringe cases; see
the appendix for more details.

Once the new position and new direction are found, the algorithm can be
repeated until it exits the apparatus, or until it is absorbed by a surface.
This algorithm has been applied to the geometry of our LDA and TC setup.
Our focal length f = 0.5 m, our beam separation is 76 mm for the green beams,
and 73 mm for the blue beams. The optical geometry of the TC apparatus [21]
used in this chapter can be characterized by 3 radii and 3 refractive indices;
see Fig. 8.1 and 8.2 and Table 8.1.

8.4.1 Shift of focal position

In this section the location of the foci (i.e. the measurement position) for both
pairs of beams are calculated. The position of the laser-head rpg is varied,
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Parameter Symbol | Value

Radius inner cylinder 5 0.20 m
Inner-radius outer cylinder To 0.28 m
Outer-radius outer cylinder Te 0.305 m
Refractive index PMMA npyvMa | 1.49 m
Refractive index water Nwater | 1.333 m

Table 8.1: Parameters describing the optical geometry of the presently used
Taylor-Couette apparatus: the T3C [21].

see Fig. 8.2. The focal position of the undisturbed beams is given by ryip — f.
For each beam-pair the focal position 7 is calculated as a function of ry, see
Figs. 8.2 and 8.4.
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Figure 8.4: The position of the two foci as a function of the position of the
laser-head. Colors are in accordance with Fig. 8.2. The trajectory of the
blue focus can be described by a piece-wise linear function, while for the green
focus it deviates from a linear function due to the curvature of the interfaces.
The foci diverge once rig — f < 7e.

If the focus is outside the apparatus, i.e. rpg — f > 7., the focal position
is given by ry = rpu — f. If the laser head is moved inward (decreasing
rea — f) the beams will first hit the outer cylinder at ry = 7. = rog — f.
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Moving the laser head further inward will cause the foci to lie inside the
PMMA, and moving even further, inside the water. The blue beams are in
the azimuthal-radial plane and refract differently from beams traveling in the
axial-radial plane. The focus of the blue beams hits the inner cylinder (r = ;)
at rpg— f =~ 0.228 m, while the focus of the green beams hits the inner cylinder
at rg — f &~ 0.22 m. The distance between the two foci as a function of the
radial position is depicted in Fig. 8.5.
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Figure 8.5: The separation between the measurement positions is normalized
with the gap width and plotted versus the focal position of the ‘axial’ beams.
Near the inner cylinder the distance between the two foci is the highest and
constitutes more than 11% of the gap. Due to the thickness of the outer
cylinder there is non-zero distance between the two foci when focused at r = r,,.

A pronounced shift of the focal positions is observed, see Fig. 8.5; the foci
never coincide, and the maximum separation is 11.5% of the gap. The effects
due to curved interfaces can therefore not be neglected. Furthermore, note
that the foci do not even coincide at » = r,; this is due to the finite thickness
of the outer cylinder, it is therefore necessary to consider both interfaces in
the analysis.

8.4.2 Beam angle correction

For the case of flat surfaces (the axial-radial plane) the velocity calculated by
the supplier’s software does not have to be corrected. Equation 8.2, however,
does not hold in the azimuthal-radial plane due to the curved surfaces, and
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the velocity has to be corrected by multiplication with Cy, see Eq. 8.3. The
refractive indices are known, and 6, can be found from the focal length and
the beam separation. 6, can be found by calculating the angle between the
focussing rays, see Figs. 8.2 and 8.3. The correction factor can then be
calculated, see Fig. 8.6.
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Figure 8.6: Correction factor Cp (see eq. 8.3) as a function of the ra-
dial position r. The azimuthal velocity u, has to be corrected: g real =

C@ (T)U¢,measured .

The velocity has to be corrected by 3% to 9%, depending on the radial position.
Note that there is a finite correction (about 3% for the optical geometry of
the current apparatus) at the water-PMMA interface at r = r,, this is due
to the non-zero thickness of the outer cylinder and taking into account both
interfaces of the outer cylinder in the analysis.

8.5 Experimental verification

The results obtained from the ray-tracer can be verified by measuring a known
flow state. The temperature of the TC system is kept at 20°C with water as
the working fluid. Dantec polyamide seed particles (7seq = 2.5 pm) with a
density of 1.03 - 10% kg/m? are used. One can estimate the minimum velocity
difference Av = |vgeed — Vainid| between a particle vgeeq and its surrounding fluid
vuid needed for the drag force Fyrag = 6Tprsced Av to outweigh the centrifugal

force Feent(r) = %wrseed?’ (Psced — PAuid) % A typical velocity in the middle of
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the gap (r = 0.24 m) is v = 5 m/s, combining with the density and viscosity
of water around 20°C, resulting in Av =~ 4 x 107% m/s. This is several orders
of magnitude smaller than the typical velocity fluctuation inside the TC-gap
of order 10! m/s and hence centrifugal forces on the seeding particles are
negligible.

For TC flow a stable and well-known flow state is solid body rotation; the inner
and outer cylinder are both rotated at a fixed speed w. After sufficient waiting
the fluid will have a velocity ug = wr, and u, = u, = 0. The experiment has
been performed for three rotation rates w (w/2m = 1Hz, 2 Hz, and 4 Hz),
where the azimuthal velocity has been measured at several radial positions
and at mid height. Similar results were found for all three cases, Fig. 8.7
shows the results for the case of w/(27) = 2 Hz.
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Figure 8.7: In red squares the uncorrected azimuthal velocity as a function
of radial position is shown, and in blue dots the corrected azimuthal velocity.
The black solid line is the theoretical flow profile ug = wr, the deviation
from this profile is plotted with green dots, the corresponding scale is on the
right. The theoretical and corrected measured profiles are found to be in good
accordance.

The measured velocities are shown in red squares, after applying the beam
angle correction the data points (blue circles) are found to agree with the the-
oretical flow profile within 0.75%. Any remaining deviation can be due to e.g.
optical misalignment or imperfection, spatially inhomogeneous refractive index
in the working fluid, or noise created by the amplification and digitalisation
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of the optical signal.

8.6 Application

Here the results are shown for the measurement of the azimuthal velocity
profile for the case that the inner cylinder is stationary and the outer cylinder
is rotating. This case has been studied before [14, 30], and because the flow is
laminar, any perturbation due to a measuring probe is likely to survive a full
revolution. To accurately obtain the speed of the (undisturbed) flow, it has to
be measured non-intrusively. Fig. 8.8 shows the results of three experiments
having varying Reynolds number (Re = w,ro(ro — 15)/V).
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Figure 8.8: For three rotation rates the azimuthal velocity is measured along
the gap. This velocity is normalized by the driving velocity in order to collapse
the data, and compared to the laminar velocity profile for infinite aspect ratio
(dashed line). The profile is found to be nearly independent of the Reynolds
number.

For three rotation rates the obtained profiles are found to collapse over a
decade of Reynolds number, but deviate from the laminar velocity profile for
infinite aspect-ratio. Due to a finite aspect ratio of the setup the presence of
the end plates will create a secondary flow, modifying the azimuthal velocity
profile. The velocity close to the inner cylinder is currently unattainable by
LDA due to reflections coming of the inner cylinder surface. These reflections
create spurious, unreliable data and therefore the profiles are shown dashed
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in that region. The present system will, in the future, be equipped with a
transparent inner cylinder, which will significantly reduce the reflections.

8.7 Conclusion

In order to measure correct velocities inside a TC apparatus using LDA, one
has to correct for the effects of the curved interfaces. Not only do the positions
of the measurement volumes depend non-trivially on the position of the laser
head, but also the measured velocity has to be corrected. A ray tracer has
been used in order to calculate the position of the foci, but also to calculate
the correction factor Cy as a function of radial position. We showed that for
our application it is crucial to take into account both interfaces of the outer
cylinder. The measurement positions do not coincide and the velocity has
to be corrected even at r = r,. Our ray-tracer is verified by measuring the
velocity for the case of solid body rotation; good agreement with the theoretical
prediction has been found. For pure outer cylinder rotation it is found that
the velocity deviates from the laminar velocity profile for infinite aspect ratio
due to the presence of the end plates.
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Appendix

Figure 8.9: Sketch of the rays in the plane of refraction.

For each interface one has to solve Snell’s law n,(ﬂl X8) = ni+1(ﬁi+1 x 8) for
kit1. From the vector equation one can see that the solution is not unique;
but the solution is unique if we require the solution to be in the plane spanned
by § and k; (called the plane of refraction). In this plane the solution can
be rewritten as follows: n;sin(6;) = nj+1sin(6i+1). kit1 can be decomposed
in to two parts; one in the direction of S and one that is tangential to the
interface and in the plane of refraction, denoted t, see figure 8.9. By simple
geometry one can find that k;y1 = sin(6;1)t+cos(6;41)(—8). The direction of
t can be found by subtracting the normal component of the incident ray: t =
k; — (k; - 8)S. From the definition of the cross product (|a x b| = |a||b|sin(«),
where « is the angle between vectors a and b) and Snell’s law, one can derive

that sin(0;41) = Z—; k; x /s\‘, and using the Pythagorean identity one writes
cos(0;+1) = /1 —sin(;+1)%. Note that one does not need to calculate the
angles 6; or 0,41, it is only necessary to know the sine and or cosine of the

angles. The direction for the outgoing ray can now be found by substituting
all the values: ki1 = sin(0;41)t + cos(0;41)(—8).




Conclusions

In this thesis high Reynolds number Taylor-Couette flow has been examined.
We set out to explore ‘terra incognita’, and done so by performing local and
global measurements in the Twente turbulent Taylor-Couette facility[21]. The
predictive power of highly turbulent Taylor-Couette flow has grown signifi-
cantly due to the results presented in this thesis. The major findings of each
chapter are listed below.

In chapter 1 (page 5) the ‘terra incognita’ was defined, and we were the first
to explore it. During the exploration of the unknown land (figure 1.1, page 8)
we found that not only for inner-cylinder rotation but also for counterrotation
and in the linearly unstable regime G o Re!™0 [9], or a universal scaling
exponent v = 0.38 for Nu,, o< Ta” (in the present Ta regime) in the terminology
borrowed from Rayleigh-Bénard (figure 1.3, page 11); showing and confirming
the analogy between the two systems[l]. We defined the new driving ratio
a = —w,/w; which focuses on the counterrotation phase space, and found that
the torque (transport of angular velocity) scales best if one follows a path in
phase space with constant a. Surprisingly, it was found that the transport
is enhanced for slight counter-rotation and that the transport maximizes for
a ~ 0.4, having over 20% more transport as compared to the case of pure
inner cylinder rotation a = 0, see figure 1.4 (page 12).

In chapter 2 (page 15) we set out to measure the local flow properties. We
did so using particle imaging velocimetry for the case of fixed outer cylinder
(a = 0). We found that the wind Reynolds number Re,, = 0.0424Ta0-495+0-010
over more than 3 decades in Taylor number: 3.8 - 10° < Ta < 6.2 - 10'2, see
figure 2.1 (page 18). This scaling is consistent with the prediction Re,, oc Tal/2
made by [2], but inconsistent with predictions made for thermal convection
[29] which can be translated to the Taylor-Couette language using [1]. From
the Navier Stokes we can find that the local transport is given by: J, =
r3 (uyw — vdyw) [1]. Where the convective term dominates the diffusive term
in the bulk once we average over time (and space). We show that u, and w

161



162 CONCLUSIONS

are indeed positively correlated (which is needed to have a positive convective
transport outwards) by simultaneously measuring both u, and w, see figure
2.4 (page 24). In addition, we found that the local convective angular velocity
flux fluctuates tremendously in time and space; for the case of Ta = 1.5 - 1012
we find that Nu, ranges from —10° to 10° and beyond while the average is
Nu, = O(300), see figure 2.2 (page 20) for the standardized normalized local
convective angular velocity flux probability density function. We found that
the transport has a height dependence, but that the global results—obtained
by torque measurements—were reproduced copacetically, see figure 2.3 (page
23).

In chapter 3 (page 25) we performed high resolution profile measurements
using particle imaging velocimetry. The mean velocity distribution was com-
puted using a single-pixel ensemble correlation method [65, 73], which pro-
vided a very high spatial resolution, see figure 3.2 (page 29). Using the global
torque values we were able to calculate the wall stress 7, and plot our profiles
in terms of wall units, see figure 3.3 on page 30. We see the emergence of a
log-profile for increasing Ta, and fit the law of the wall u™ = 1/kIny™ + B to
these profiles. We find that the inverse prefactor (k) goes towards its classical
value of 0.4 for increasing Ta, see figure 3.4 (page 32). We note that the law of
the wall was derived under the assumption of a flat wall, we therefore look at
the ratio of the upper edge of our fitting regime to the radius of curvature of
the cylinder to quantify the possible influence of the curvature. We find that
this ratio goes to ~ 1% for Ta = 10'2, and that a significant influence of the
curvature can not be excluded for lower Taylor numbers, see figure 3.4 (page
32). Furthermore, the variance of the local azimuthal velocity was calculated
for the boundary layer of the inner cylinder, see figure 3.5 on page 34. We
found that the height of the peak of the variance collapses best when the ve-
locity is rescaled with the driving velocity rather than the wall velocity, and
that the peak is around y™ = 12; as found in pipe and channel flows (see e.g.
[59, 60]). Lastly, we also find the log-law for the velocity variance—as found
by [62]—for y* > 50, see figure 3.5 on page 34.

In chapter 4 (page 37) the possibility of multiple states for very high Reynolds
number is demonstrated by combined global (torque) and local (laser Doppler
anemometry) measurements. The Twente turbulent Taylor-Couette [21] was
upgraded and outfitted with a hollow flanged reaction torque transducer, im-
proving the accuracy of the measurements. With this new sensor the transport
was found to scale as Nu,, o« Ta%*? as opposed to previous measurements in-
dicating an exponent of ~ 0.38. It was thought that local structures would
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vanish for sufficiently high Reynolds numbers, and indeed this was the con-
clusion of Ref. [63], which showed that for a = 0 the structure seems to
disappear for Re = 1.2 - 10°. We did not find any clear roll structure for the
case of a = 0 for Re = 10 (Ta = 10'2) in the laser Doppler anemometry
data, but did find them for a # 0 for the same Ta, see figures 4.3c and 4.3d
on page 44. Furthermore, once a trajectory in phase-space was traversed (see
figure 4.2 on page 40), it was found that the system was hysteretic and that
it can go in to a ‘high’ or a ‘low’ state, see figure 4.3 on page 44. It was
found that multiple states can occur for rotation ratios 0.17 < a < 0.51. For
0 < a < 0.17 we only found one state, and for a > 0.51 we could not find
a clear roll structure in the system. The presence of flow structure for such
high Reynolds number questions Kolmogorov’s paradigm, though structures
might disappear for even much higher Taylor numbers. The value for aqp; was
improved from a = 0.4 (chapter 1, page 5) and a = 0.33+0.04 (chapter 6, page
67) to a = 0.36 £0.005. Our results also suggest that the optimal transport is
connected to the existence of very stable and strong coherent structures inside
the fluid.

In chapter 5 (page 49) the statistical properties of the velocity fluctuations
of the local flow were examined. The local velocity was measured using laser
Doppler anemometry for varying amounts of counterrotation (i.e. changing
a), see figures 5.1 (page 51) and 5.2 (page 54). For various a between 0 and
2 we measure 5 - 10° data points and carefully perform statistical analysis on
them. We find that for all powers p and for all a the longitudinal structure
functions do not show an inertial subrange. Using extended self-similarity
[96] we extract the structure functions exponents. We find that they are in
good agreement with results found by [10] using hot-film anemometry, which
did similar analysis but only for @ = 0 and for Re = 6.9 - 10* and Re =
5.4 - 105, while the current findings are for Re = 1.38 - 10°%. It was found that
the exponents are almost independent of Re over the range Re = 6.9 - 10%-
1.38 - 10%, or roughly 2.6 decades in Taylor number. Furthermore, it seems
that the exponents only weakly depend on the amount of counter-rotation,
though for ¢ > 1 we find that for p = 6 the exponents are slightly higher
than for 0 < a < 1. We find that for a € {0.6,0.8,1.0} the spectra shows
a clear power law scaling in the spectra, while for a € {0.2,0.3,0.4,2} the
power law is less clear, and for a = 0 there is no power law at all. For a =0
we find that the exponent is a constantly changing and does not show any
Kolmogorov inertial subrange scaling of —5/3. Though we find clear power
law scaling in the spectra for a € {0.6,0.8,1.0}, we do not see clear scaling in
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the second-order structure functions.

In chapter 6 (page 67) global measurements were performed in order to en-
hance the resolution of figure 1.4, and to get new insight by performing global
measurement using laser Doppler anemometry as well. In this chapter we find
that the optimal is at aopt = 0.33 £ 0.04, and improvement of the aqp; = 0.4
found in chapter 1 (page 5), though we later improved the resolution of agpt
to a = 0.36 £ 0.005 in chapter 4 (page 37). We find that (compared to the
case of a = 0) the transport is enhanced if counter rotation is added by the
outer cylinder, despite the stabilizing effect of the outer cylinder. Once one
increases the outer cylinder rotation more the stabilizing effect takes over and
reduces the transport. We find that the velocity gradient goes to zero in the
bulk for a around aept, and we find that for 0 < a < agpt we do not see the
‘neutral line’ inside the bulk of the flow; the neutral line is somewhere very
close to the outer cylinder. In addition, in this range of a we find that the
velocity if monomodal. For a > aqpy we do find a neutral line in the bulk of
the flow, and the probability density function of the flow becomes bimodal.
We provide a hypothesis to understand the bimodality in combination with
the neutral line.

In chapter 7 (page 109) we set out to explore the 1 dependence of Taylor-
Couette flow. This was done both numerically (the work of Rodolfo Ostilla
Mbonico) and experimentally. The radius ratio was changed from 0.5 to 0.909
in the numerics and 0.716 to 0.909 in experiments. We find that the transport
has an exponent v ~ 0.39 for the high Ta, i.e. Nu, o Ta%3"  independent
of the rotation ratio a and 7, see figures 7.4 (page 123) and 7.7 (page 128).
We find that for high Taylor number the optimum a—the a with the heighest
transport—depends on the radius ratio n if one expresses it in terms of the
Rossby number: Rog; = —0.20 (n = 0.716), Ro,, = —0.15 (n = 0.769),
Rogplt = —0.10 (n = 0.833), Rogplt = —0.05 (n = 0.909), but roughly collapses
in terms of a: a ~ 0.33-0.35 for all  examined (see figures 7.9 on page 131
and 7.10 on page 132). Also local velocity profiles were measured using laser
Doppler anemometry (and obtained in the DNS simulations). It was found
that for a = agpt (Ro_1 = Rogplt) and for all n that the velocity profiles are
remarkably flat in the bulk.

In chapter 8 (page 147) we show how one can perform laser Doppler measure-
ments inside a Taylor-Couette apparatus. The measurement of the velocity
using laser Doppler anemometry is complicated by the curved surface of the
outer cylinder. We explain how the LDA-rays can be traced using a 3D ray
tracer. We show how the measurements position depends non-trivially on the



165

position of the laser head, and how the velocity of the measured velocity is
affected by the curvature of the outer cylinder (figure 8.6 on page 156). In
addition we show that it is crucial to take the refraction at both interfaces of
the outer cylinder in to account. We test out the ray-tracer by measuring flow
of solid body rotation, see figure 8.7 on page 157. The corrected flow profile
is benchmarked against high resolution magnetic encoders and we find that
the error has been substantially reduced and is within 0.75% of the expected
profile. In the appendix of that chapter (page 160) the algorithm is detailed
and it is shown how the algorithm can be implemented without the use of
trigonometric functions.
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summary

The ubiquity of turbulent flows in nature and technology makes it of utmost
importance to fundamentally understand turbulence. In this thesis the realm
of highly turbulent Taylor-Couette flow is explored in order to improve said
understanding. Local and global measurements are performed in order to
strengthen the knowledge of the Taylor-Couette flow geometry. First, the de-
pendence of the driving strength on the angular velocity transport is examined
and was found to universally scale as G Re%'76 (or, by using the analogy be-
tween Taylor-Couette and Rayleigh-Bénard, Nu,, o Ta0'38) in the present pa-
rameter regime in the ultimate Taylor-Couette regime. The system was found
to have maximum transport for the case where the cylinders are in a counter
rotation at @ = —w,/w; ~ 0.4, see chapter 1. In chapter 2 local measurements
using particle imaging velocimetry reveal that the ‘wind’ Reynolds number
scales as Rey, oc Tal495%0:010 "yery close to predictions made for the ultimate
turbulence regime. In addition local measurements of the angular velocity flux
are provided, and they exhibit very large fluctuations (more than 300x their
mean). Despite these large fluctuation it was found that the local transport
measurements agree with the global torque measurements. Chapter 3 explores
the boundary layer properties of turbulent Taylor-Couette flow using high res-
olution, single-pixel, particle image velocimetry measurements. The profile is
fitted with the law of the wall by von Kéarman (ut = % Iny* + B) and the von
Kéarman constant x is found to approach 0.4 with increasing Ta. The variance
profiles of the local azimuthal velocity are found to display a peak around
yT = 12 and collapse when rescaled with the driving velocity, rather than
with the friction velocity found in other flows. In the outer layer (y* > 50)
the variance profile show logarithmic dependence as found in channel and pipe
flows. In chapter 4 Kolmogorov’s 1941 paradigm is questioned. Conclusive ev-
idence of multiple turbulent states for very large Reynolds number (Re = 10°)
Taylor-Couette flow is presented. Combined global torque- and local-velocity
measurements exemplify the existence of multiple states. In chapter 5 the
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statistics of turbulent fluctuations are presented. Laser Doppler anemometry
measurements are performed in the center of the gap of the Taylor-Couette
apparatus. The structure function exponents are extracted from the longitu-
dinal structure functions using extended self-similarity introduced by Benzi et
al. in 1993. The exponents are found to weakly depend on a in the range 0-2.
The measurements for a = 0 are in good agreement with the measurements
of Lewis and Swinney in 1999 and the power spectra show —5/3 scaling for
a € {0.6,0.8,1.0}, rough —5/3 scaling for a € {0.2,0.3,0.4,2.0}, and no clear
scaling for a = 0. In chapter 6 the value of a,p; is updated to aepy = 0.33+£0.04
(from a = 0.4 in chapter 1). Local velocity profiles are presented over a wide
range of a. For certain values of a and for certain radial positions the probabil-
ity density function of the local velocity are shown to be bimodal. The results
are interpreted as a competition between destabilizing inner cylinder rotation
and stabilizing, but shear enhancing, outer cylinder rotation. In chapter 7
the dependence of the radius ratio n = r;/r, (the third control parameter
next to Ta and a) is explored. Numerical simulations (contributed by Rodolfo
Ostilla Ménico) and experimental measurements are combined and show the
effects of n over the range 0.5-0.909. The transport Nu,, is found to scale as
Nug, o< Ta%3? for high Ta, and the exponent is nearly independent of 7 and a.
In terms of the Rossby number the rotation rates for which the transport is
maximum (Rogpt) is found to depend on 7, but in terms of a they are very close
and nearly independent of n—at least in the range of n explored. In chapter
8 it is shown how the curvature of the curved outer cylinder affects the focal
position and a velocity measurement using laser Doppler measurement. It is
shown how the correction factors can be calculated using a ray tracer in order
to correct for the curved surface. Using these correction factors it is shown
that the velocity profile is significantly improved.



summary (Frisian)

Turbulinte streamings binne oeral fertsjintwurdige yn ’e natoer en technyk, en
it is dérom wichtich om se flineminteel te begripen. Yn dit proefskrift wurdt
it domein fan heechturbulinte Taylor-Couette-streamings tindersocht om dat
flinemintele begripen te ferbetterjen. Lokale en globale mjittings binne utfierd
om de kennis fan streamings yn ’e Taylor-Couette-geometry te ferbetterjen.
Op ’t foarste plak is de 6thinklikens fan de draaifaasje op it hoekfaasjetrans-
port indersocht. It die bliken dat dy universeel te skalen wie as G' o Re!'™® (of
as Nu,, oc Ta%3®, ttdrukt yn ’e terminology dy’t liend is fan Rayleigh-Bénard-
konveksje) yn it hjoeddeiske parameterrezjym yn it ultime Taylor-Couette-
rezjym. It systeem hat in maksimaal transport yn it gefal dat de silinders
tsjin inoar yn draaie mei a = —w,/w; = 0.4, sjoch haadstik 1. Gebriik meit-
sjend fan PIV (streamingsmjitting mei help fan dieltsjes) wurdt yn haadstik 2
oan it ljocht brocht dat it ‘wyn’-Reynoldsgetal skaalt as Re,, oc Ta%-495+0.010,
tige ticht by de foarsizzings makke foar it ultime turbulinte rezjym. Der binne
ek mjittings oan de lokale hoekfaasjestream utfierd, en dy fertoane tige grutte
fluktuaasjes (mear as 300x harren trochsnee). Nettsjinsteande dy grutte fluk-
tuaasjes komme de trochsneewearden oerien mei de globale keppelmjittings.
De grinslaacheigenskippen fan turbulinte Taylor-Couette-streamings binne {in-
dersocht mei hege resoltsje, inkelde-piksel, PIV-mjittings, sjoch haadstik 3. It
profyl wurdt ferlike mei de muorrewet fan von Karmén (u™ = LIny™ + B),
dér’t ut bliken docht dat de von Karman konstante x 0.4 benei komt foar tan-
immende Ta. De faridnsjeprofilen fan de lokale azimutale faasje litte in pyk
sjen om y T = 12 hinne en de gegevens falle oer inoar hinne as dy skaald wurde
mei de oandriuwfaasje mar net, lykas by oare floeistofstreamings, as dy skaald
wurde mei de wriuwingsfaasje. De faridnsjeprofilen fertoane in logaritmyske
ofhinklikens yn ’e biitenlaach (y* > 50), krekt lykas yn kanaal- en piipstream-
ings. Yn haadstik 4 wurdt it paradigma ut 1941 fan Kolmogorov yn twivel
lutsen. Der wurdt in slutend bewiis foar meardere turbulinte tastannen yn
Taylor-Couette-streamings foar tige hege Reynolds-getallen (Re = 10%) jin.
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Kombinearre globale keppel- en lokalefaasjemjittings yllustrearje it bestean
fan meardere tastannen. Yn haadstik 5 wurde de statistyske eigenskippen fan
turbulinte fluktuaasjes toand. Laser-Doppler-anemometrymjittings wurde t-
fierd yn it midden fan de Taylor-Couette-silinders. Troch gebriik te meitsjen
fan Utwreide selsgelikenis, yntrodusearre troch Benzi et al. yn 1993, binne
de struktuerfunksje-eksponinten 1t de longitudinale struktuerfunksjes helle.
De eksponinten hingje swak 6f fan a yn it berik 0-2. De a = 0 mjittings
komme goed oerien mei de resultaten fan Lewis en Swinney yn 1999. De fer-
mogensspektrums litte in —5/3-skaling sjen foar a € {0.6,0.8,1.0}, likernoch
—5/3-skaling foar a € {0.2,0.3,0.4,2.0}, en gjin dudlike skaling foar a = 0.
Yn haadstik 6 is de wearde fan aqpy oanpast fan a = 0.4 yn haadstik 1 nei
aopt = 0.33 £ 0.04. Lokalefaasjeprofilen wurde toand foar in breed skala oan
a’s. Foar guon wearden fan a en foar guon radiéle posysjes binne de wierskyn-
likheidstichtensfunksjes fan de lokale faasje bimodaal. De resultaten wurde yn-
terpretearre as in kompetysje tusken destabilisearjende binnensilinderrotaasje
en in stabilisearjende, mar 6fskospanningfergrutsjende, biitensilinderrotaasje.
Yn haadstik 7 wurdt de 6thinklikens fan de strielferhalding n = r; /7, (de tredde
stjoerparameter njonken Ta en a) tindersocht. Resultaten fan numerike simu-
laasjes (bydroegen troch Rodolfo Ostilla Ménico) en eksperimintele mjittings
wurde gearfoege en litte it effekt fan 7 sjen oer it berik 0.5-0.909. It transport
Nu,, skaalt as Nu,, oc Ta%3? foar grutte Ta, en de eksponinten binne suver
no6thinklik fan 7 en a. Yn termen fan it Rossbygetal is it maksimale trans-
port (Rogpt) 6thinklik fan 7, lykwols yn termen fan a is it maksimale transport
suver inodfhinklik fan n—alteast yn it ferkende berik. Yn haadstik 8 wurdt
toand hoe’t de kromming fan de biitensilinder ynfloed hat op de fokusposysje
en faasjemjittings fan de laser-Doppler-anemometry. Der wurdt toand hoe’t
de korreksjefaktoaren berekkene wurde kinne mei help fan in raytracer om
de gefolgen fan it kromde oervlak te kompensearjen. De faasjeprofilen wurde
sinjifikant ferbettere troch gebriik te meitsjen fan de korreksjefaktoaren.



Summary (Dutch)

Turbulente stromingen zijn alomvertegenwoordigd in de natuur en techniek, en
het is daarom belangrijk om ze fundamenteel te begrijpen. In dit proefschrift
wordt het domein van hoogturbulente Taylor-Couette-stromingen onderzocht
om dit fundamentele begrip te verbeteren. Lokale en globale metingen zijn
uitgevoerd om de kennis van stromingen in de Taylor-Couette-geometrie te
verbeteren. Allereerst is de afhankelijkheid van de draaisnelheid op het hoek-
snelheidstransport onderzocht. Deze bleek universeel te schalen als G o< Re!™0
(of als Nu,, o« Ta%38 als deze wordt uitgedrukt in de terminologie geleend
van Rayleigh-Bénard-convectie) in het huidige parameterregime in het ultieme
Taylor-Couette-regime. Het systeem heeft een maximaal transport in het geval
dat de cilinders tegen elkaar in draaien met a = —w,/w; &~ 0.4, zie hoofd-
stuk 1. Gebruikmakend van PIV (stromingsmeting m.b.v. deeltjes) wordt
aan het licht gebracht in hoofdstuk 2 dat het ‘wind’-Reynoldsgetal schaalt als
Rey, o< Tal495#0.010. eer dicht bij de voorspellingen gemaakt voor het ultieme
turbulente regime. Ook zijn metingen aan de lokale hoeksnelheidsstroom uit-
gevoerd, en deze vertonen zeer grote fluctuaties (meer dan 300x hun gemid-
delde). Ondanks deze grote fluctuaties komen de gemiddelde waarden overeen
met de globale koppelmetingen. De grenslaageigenschappen van turbulente
Taylor-Couette-stroming zijn onderzocht met hoge resolutie, enkele-pixel, PIV
metingen, zie hoofdstuk 3. Het profiel wordt vergeleken met de muurwet van
von Kdrmén (u = € Iny™ + B) waaruit blijkt dat de von Kdrmén constante «
0.4 nadert voor toenemende Ta. De variantieprofielen van de lokale azimuthale
snelheid tonen een piek rond y™ = 12 en de data vallen over elkaar heen als
deze worden geschaald met de aandrijfsnelheid maar niet, zoals bij andere
vloeistofstromingen, als deze worden geschaald met de wrijvingssnelheid. De
variantieprofielen vertonen een logaritmische afhankelijkheid in de buitenlaag
(y™ > 50), net zoals in kanaal- en pijpstromingen. In hoofdstuk 4 wordt
het paradigma uit 1941 van Kolmogorov in twijfel getrokken. Sluitend bewijs
voor meerdere turbulente toestanden in Taylor-Couette-stromingen voor zeer
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hoge Reynolds-getallen (Re = 10°) wordt getoond. Gecombineerde globale
koppel- en lokalesnelheidsmetingen illustreren het bestaan van meerdere toe-
standen. In hoofdstuk 5 worden de statistische eigenschappen van turbulente
fluctuaties getoond. Laser-Doppler-anemometriemetingen worden uitgevoerd
in het midden van de Taylor-Couette-cilinders. Door gebruik te maken van
uitgebreide zelf-gelijkenis, geintroduceerd door Benzi et al. in 1993, zijn de
structuurfunctie-exponenten uit de longitudinale structuurfuncties gehaald.
De exponenten hangen zwak af van a in het bereik 0-2. De a = 0 metingen
komen goed overeen met de resultaten van Lewis en Swinney in 1999. De ver-
mogensspectra laten een —5/3-schaling zien voor a € {0.6,0.8,1.0}, ongeveer
—5/3-schaling voor a € {0.2,0.3,0.4,2.0}, en geen duidelijke schaling voor
a = 0. In hoofdstuk 6 is de waarde van aqp; geiipdatet van a = 0.4 in hoofd-
stuk 1 naar aepy = 0.33 = 0.04. Lokalesnelheidsprofielen worden getoond voor
een breed scala aan a’s. Voor bepaalde waarden van a en voor bepaalde radiéle
posities zijn de waarschijnlijkheidsdichtheidfuncties van de lokale snelheid bi-
modaal. De resultaten worden geinterpreteerd als een competitie tussen desta-
biliserende binnencilinderrotatie en een stabiliserende, maar afschuifspanning-
vergrotende, buitencilinderrotatie. In hoofdstuk 7 wordt de afhankelijkheid
van de straalverhouding n = r;/r, (de derde stuurparameter naast Ta en a)
onderzocht. Resultaten van numerieke simulaties (bijgedragen door Rodolfo
Ostilla Ménico) en experimentele metingen worden samengevoegd en laten
het effect van 7 zien over het bereik 0.5-0.909. Het transport Nu, schaalt
als Nu, o< Ta%3 voor grote Ta, en de exponenten zijn bijna onafhankelijk
van 1 en a. In termen van het Rossbygetal is het maximale transport (Rogpt)
afhankelijk van 7, echter in termen van a is het maximale transport bijna on-
afhankelijk van n—tenminste in het verkende bereik. In hoofdstuk 8 wordt
getoond hoe de kromming van de buitencilinder invloed heeft op de focus-
positie en snelheids metingen van de laser-Doppler-anemometrie. Er wordt
getoond hoe de correctiefactoren kunnen worden berekend met behulp van
een raytracer om de gevolgen van het gekromde oppervlak te compenseren.
De snelheidsprofielen worden significant verbeterd door gebruik te maken van
de correctiefactoren.
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